Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
PLoS One ; 19(8): e0306525, 2024.
Article in English | MEDLINE | ID: mdl-39146303

ABSTRACT

Metastatic prostate cancer (mPCa) is a widespread disease with high mortality. Unraveling molecular mechanisms of disease progression is of utmost importance. The microenvironment in visceral organs and the skeletal system is of particular interest as a harbinger of metastatic spread. Therefore, we performed a comprehensive transcriptomic analysis of prostate cancer lung metastases with a special focus on differentially expressed genes attributable to the microenvironment. Digital gene expression analysis using the NanoString nCounter analysis system was performed on formalin-fixed, paraffin-embedded (FFPE) tissue from prostate cancer (PCa) lung metastases (n = 24). Data were compared to gene expression data from primary PCa and PCa bone metastases. Bioinformatic analysis was performed using several publicly available tools. In comparison to prostate cancer bone metastases, 209 genes were significantly upregulated, and 100 genes were significantly downregulated in prostate cancer lung metastases. Among the up-regulated genes, the top 10 genes with the most significant P-value were HLA-DPB1, PTPRC, ITGB7, C3, CCL21, CCL5, ITGAM, SERPINA1, MFAP4, ARAP2 and among the down-regulated genes, the top 10 genes with the most significant P-value were FOXC2, TWIST1, CDK14, CHAD, IBSP, EPN3, VIT, HAPLN1, SLC44A4, TBX1. In PCa lung metastases genes associated with immunogenic responses were upregulated while genes associated with epithelial-mesenchymal transition were down-regulated. We also showed that CXCR3/CXCL10 axis plays a significant role in prostate cancer lung metastases in comparison to bone metastases. In this study, we comprehensively explored transcriptomic alterations in PCa lung metastases in comparison to primary PCa and PCa bone metastases. In PCa lung metastases genes associated with immunogenic responses are upregulated while genes associated with epithelial-mesenchymal transition are down-regulated. This points to a more immunogenic phenotype of PCa lung metastases thus potentially making patients more susceptible to immunotherapeutic approaches.


Subject(s)
Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Lung Neoplasms , Prostatic Neoplasms , Male , Humans , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Lung Neoplasms/genetics , Lung Neoplasms/secondary , Lung Neoplasms/pathology , Transcriptome , Bone Neoplasms/secondary , Bone Neoplasms/genetics , Aged , Middle Aged , Tumor Microenvironment/genetics
2.
Respir Res ; 25(1): 26, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38200596

ABSTRACT

BACKGROUND: Honeycomb cysts (HC) within the alveolar region are distinct histopathological features in the lungs of idiopathic pulmonary fibrosis (IPF) patients. HC are lined with a single-or stratified layer of basal cells (BC), or with a bronchiolar-like epithelium composed of basal-, ciliated- and secretory epithelial cells. By using cultured IPF patient-derived alveolar BC, we aimed to establish an in vitro- and in vivo model to mimic HC formation in IPF. We (1) optimized conditions to culture and propagate IPF patient-derived alveolar BC, (2) cultured the cells on an air liquid interface (ALI) or in a three dimensional (3D) organoid model, and (3) investigated the cells` behavior after instillation into bleomycin-challenged mice. METHODS: Alveolar BC were cultured from peripheral IPF lung tissue and grown on tissue-culture treated plastic, an ALI, or in a 3D organoid model. Furthermore, cells were instilled into bleomycin-challenged NRG mice. Samples were analyzed by TaqMan RT-PCR, immunoblotting, immunocytochemistry/immunofluorescence (ICC/IF), or immunohistochemistry (IHC)/IF. Mann-Whitney tests were performed using GraphPad Prism software. RESULTS: Cultured alveolar BC showed high expression of canonical basal cell markers (TP63, keratin (KRT)5, KRT14, KRT17), robust proliferation, and wound closure capacity. The cells could be cryopreserved and propagated for up to four passages without a significant loss of basal cell markers. When cultured on an ALI or in a 3D organoid model, alveolar BC differentiated to ciliated- and secretory epithelial cells. When instilled into bleomycin-challenged mice, human alveolar BC cells formed HC-like structures composed of human basal-, and secretory epithelial cells within the mouse parenchyma. CONCLUSION: IPF patient-derived alveolar BC on an ALI, in 3D organoids or after instillation into bleomycin-challenged mice form HC-like structures that closely resemble HC within the IPF lung. These models therefore represent powerful tools to study honeycomb formation, and its potential therapeutic inhibition in IPF.


Subject(s)
Idiopathic Pulmonary Fibrosis , Humans , Animals , Mice , Idiopathic Pulmonary Fibrosis/chemically induced , Alveolar Epithelial Cells , Epithelial Cells , Bleomycin/toxicity , Epithelium
3.
Am J Pathol ; 194(2): 180-194, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38029923

ABSTRACT

A minimal diffusion barrier is key to the pulmonary gas exchange. In alveolar capillary dysplasia (ACD), a rare genetically driven disease of early infancy, this crucial fibrovascular interface is compromised while the underlying pathophysiology is insufficiently understood. Recent in-depth analyses of vascular alterations in adult lung disease encouraged researchers to extend these studies to ACD and compare the changes of the microvasculature. Lung tissue samples of children with ACD (n = 12), adults with non-specific interstitial pneumonia (n = 12), and controls (n = 20) were studied using transmission electron microscopy, single-gene sequencing, immunostaining, exome sequencing, and broad transcriptome profiling. In ACD, pulmonary capillary basement membranes were hypertrophied, thickened, and multilamellated. Transcriptome profiling revealed increased CDH5, COL4A1, COL15A1, PTK2B, and FN1 and decreased VIT expression, confirmed by immunohistochemistry. In contrast, non-specific interstitial pneumonia samples showed a regular basement membrane architecture with preserved VIT expression but also increased COL15A1+ vessels. This study provides insight into the ultrastructure and pathophysiology of ACD. The lack of normally developed lung capillaries appeared to cause a replacement by COL15A1+ vessels, a mechanism recently described in interstitial lung disease. The VIT loss and FN1 overexpression might contribute to the unique appearance of basement membranes in ACD. Future studies are needed to explore the therapeutic potential of down-regulating the expression of FN1 and balancing VIT deficiency.


Subject(s)
Lung Diseases, Interstitial , Persistent Fetal Circulation Syndrome , Infant, Newborn , Child , Adult , Humans , Basement Membrane , Pulmonary Alveoli , Lung , Capillaries
4.
Cancers (Basel) ; 15(12)2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37370779

ABSTRACT

(1) Background: HNSCC is a highly heterogeneous and relapse-prone form of cancer. We aimed to expand the immunological tool kit against HNSCC by conducting a functional screen to generate chimeric antigen receptor (CAR)-NK-92 cells that target HER1/epidermal growth factor receptor (EGFR). (2) Methods: Selected CAR-NK-92 cell candidates were tested for enhanced reduction of target cells, CD107a expression and IFNγ secretion in different co-culture models. For representative HNSCC models, patient-derived primary HNSCC (pHNSCC) cell lines were generated by employing an EpCAM-sorting approach to eliminate the high percentage of non-malignant cells found. (3) Results: 2D and 3D spheroid co-culture experiments showed that anti-HER1 CAR-NK-92 cells effectively eliminated SCC cell lines and primary HNSCC (pHNSCC) cells. Co-culture of tumor models with anti-HER1 CAR-NK-92 cells led to enhanced degranulation and IFNγ secretion of NK-92 cells and apoptosis of target cells. Furthermore, remaining pHNSCC cells showed upregulated expression of putative cancer stem cell marker CD44v6. (4) Conclusions: These results highlight the promising potential of CAR-NK cell therapy in HNSCC and the likely necessity to target multiple tumor-associated antigens to reduce currently high relapse rates.

6.
Int J Mol Sci ; 24(3)2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36768808

ABSTRACT

PiZZ (Glu342Lys) α1-antitrypsin deficiency (AATD) is characterized by intrahepatic AAT polymerization and is a risk factor for liver disease development in children. The majority of PiZZ children are disease free, hence this mutation alone is not sufficient to cause the disease. We investigated Z-AAT polymers and the expression of fibrosis-related genes in liver tissues of PiZZ children with different clinical courses. Liver biopsies obtained during 1979-2010 at the Department of Paediatrics, Karolinska University Hospital, Sweden, were subjected to histological re-evaluation, immunohistochemistry and NanoString-based transcriptome profiling using a panel of 760 fibrosis plus 8 bile acid-related genes. Subjects were divided into three groups based on clinical outcomes: NCH (neonatal cholestasis, favourable outcome, n = 5), NCC (neonatal cholestasis, early cirrhosis and liver transplantation, n = 4), and NNCH (no neonatal cholestasis, favourable outcome, n = 5, six biopsies). Hepatocytes containing Z-AAT polymers were abundant in all groups whereas NCC showed higher expression of genes related to liver fibrosis/cirrhosis and lower expression of genes related to lipid, aldehyde/ketone, and bile acid metabolism. Z-AAT accumulation per se cannot explain the clinical outcomes of PiZZ children; however, changes in the expression of specific genes and pathways involved in lipid, fatty acid, and steroid metabolism appear to reflect the degree of liver injury.


Subject(s)
Cholestasis , alpha 1-Antitrypsin Deficiency , Humans , Child , Infant, Newborn , alpha 1-Antitrypsin Deficiency/pathology , Liver/metabolism , Liver Cirrhosis/genetics , Liver Cirrhosis/pathology , Cholestasis/metabolism , Biopsy , Disease Progression , Lipids
7.
Cardiovasc Res ; 119(2): 520-535, 2023 03 31.
Article in English | MEDLINE | ID: mdl-35998078

ABSTRACT

AIMS: Severe acute respiratory syndrome coronavirus-2 infection causes COVID-19, which in severe cases evokes life-threatening acute respiratory distress syndrome (ARDS). Transcriptome signatures and the functional relevance of non-vascular cell types (e.g. immune and epithelial cells) in COVID-19 are becoming increasingly evident. However, despite its known contribution to vascular inflammation, recruitment/invasion of immune cells, vascular leakage, and perturbed haemostasis in the lungs of severe COVID-19 patients, an in-depth interrogation of the endothelial cell (EC) compartment in lethal COVID-19 is lacking. Moreover, progressive fibrotic lung disease represents one of the complications of COVID-19 pneumonia and ARDS. Analogous features between idiopathic pulmonary fibrosis (IPF) and COVID-19 suggest partial similarities in their pathophysiology, yet, a head-to-head comparison of pulmonary cell transcriptomes between both conditions has not been implemented to date. METHODS AND RESULTS: We performed single-nucleus RNA-sequencing on frozen lungs from 7 deceased COVID-19 patients, 6 IPF explant lungs, and 12 controls. The vascular fraction, comprising 38 794 nuclei, could be subclustered into 14 distinct EC subtypes. Non-vascular cell types, comprising 137 746 nuclei, were subclustered and used for EC-interactome analyses. Pulmonary ECs of deceased COVID-19 patients showed an enrichment of genes involved in cellular stress, as well as signatures suggestive of dampened immunomodulation and impaired vessel wall integrity. In addition, increased abundance of a population of systemic capillary and venous ECs was identified in COVID-19 and IPF. COVID-19 systemic ECs closely resembled their IPF counterparts, and a set of 30 genes was found congruently enriched in systemic ECs across studies. Receptor-ligand interaction analysis of ECs with non-vascular cell types in the pulmonary micro-environment revealed numerous previously unknown interactions specifically enriched/depleted in COVID-19 and/or IPF. CONCLUSIONS: This study uncovered novel insights into the abundance, expression patterns, and interactomes of EC subtypes in COVID-19 and IPF, relevant for future investigations into the progression and treatment of both lethal conditions.


Subject(s)
COVID-19 , Idiopathic Pulmonary Fibrosis , Respiratory Distress Syndrome , Humans , Idiopathic Pulmonary Fibrosis/genetics , Idiopathic Pulmonary Fibrosis/metabolism , Lung/metabolism , Respiratory Distress Syndrome/metabolism , Transcriptome
8.
Angiogenesis ; 26(2): 233-248, 2023 05.
Article in English | MEDLINE | ID: mdl-36371548

ABSTRACT

A wide range of cardiac symptoms have been observed in COVID-19 patients, often significantly influencing the clinical outcome. While the pathophysiology of pulmonary COVID-19 manifestation has been substantially unraveled, the underlying pathomechanisms of cardiac involvement in COVID-19 are largely unknown. In this multicentre study, we performed a comprehensive analysis of heart samples from 24 autopsies with confirmed SARS-CoV-2 infection and compared them to samples of age-matched Influenza H1N1 A (n = 16), lymphocytic non-influenza myocarditis cases (n = 8), and non-inflamed heart tissue (n = 9). We employed conventional histopathology, multiplexed immunohistochemistry (MPX), microvascular corrosion casting, scanning electron microscopy, X-ray phase-contrast tomography using synchrotron radiation, and direct multiplexed measurements of gene expression, to assess morphological and molecular changes holistically. Based on histopathology, none of the COVID-19 samples fulfilled the established diagnostic criteria of viral myocarditis. However, quantification via MPX showed a significant increase in perivascular CD11b/TIE2 + -macrophages in COVID-19 over time, which was not observed in influenza or non-SARS-CoV-2 viral myocarditis patients. Ultrastructurally, a significant increase in intussusceptive angiogenesis as well as multifocal thrombi, inapparent in conventional morphological analysis, could be demonstrated. In line with this, on a molecular level, COVID-19 hearts displayed a distinct expression pattern of genes primarily coding for factors involved in angiogenesis and epithelial-mesenchymal transition (EMT), changes not seen in any of the other patient groups. We conclude that cardiac involvement in COVID-19 is an angiocentric macrophage-driven inflammatory process, distinct from classical anti-viral inflammatory responses, and substantially underappreciated by conventional histopathologic analysis. For the first time, we have observed intussusceptive angiogenesis in cardiac tissue, which we previously identified as the linchpin of vascular remodeling in COVID-19 pneumonia, as a pathognomic sign in affected hearts. Moreover, we identified CD11b + /TIE2 + macrophages as the drivers of intussusceptive angiogenesis and set forward a putative model for the molecular regulation of vascular alterations.


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Myocarditis , Humans , Vascular Remodeling , SARS-CoV-2 , Inflammation
9.
Int J Mol Sci ; 23(21)2022 Oct 27.
Article in English | MEDLINE | ID: mdl-36361816

ABSTRACT

Bone metastatic (BM) prostate cancer (PCa) belongs to the most lethal form of PCa, and therapeutic options are limited. Molecular profiling of metastases contributes to the understanding of mechanisms defining the bone metastatic niche. Our aim was to explore the transcriptional profile of PCa BM and to identify genes that drive progression. Paraffin-embedded tissues of 28 primary PCa and 30 BM were submitted to RNA extraction and analyzed by RNA sequencing using the Nanostring nCounter gene expression platform. A total of 770 cancer-related genes were measured using the Nanostring™ PanCancer progression panel. Gene Ontology (GO), KEGG, Reactome, STRING, Metascape, PANTHER, and Pubmed were used for data integration and gene annotation. We identified 116 differentially expressed genes (DEG) in BM compared to primaries. The most significant DEGs include CD36, FOXC2, CHAD, SPP1, MMPs, IBSP, and PTX3, which are more highly expressed in BM, and ACTG2, MYH11, CNN1, FGF2, SPOCK3, and CHRDL1, which have a lower expression. DEGs functionally relate to extracellular matrix (ECM) proteoglycans, ECM-receptors, cell-substrate adhesion, cell motility as well as receptor tyrosine kinase signaling and response to growth factors. Data integration and gene annotation of 116 DEGs were used to build a gene platform which we termed "Manually Annotated and Curated Nanostring-data Platform". In summary, our results highlight the significance of certain genes in PCa BM to which essential pro-metastatic functions could be ascribed. Data from this study provide a comprehensive platform of genes that are related to PCa BM and provide evidence for further investigations.


Subject(s)
Bone Neoplasms , Prostatic Neoplasms , Male , Humans , Prostatic Neoplasms/metabolism , Prostate/pathology , Gene Ontology , Bone Neoplasms/genetics , Bone Neoplasms/secondary , Gene Expression , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Computational Biology/methods , Tumor Microenvironment/genetics
10.
Cells ; 11(11)2022 06 02.
Article in English | MEDLINE | ID: mdl-35681516

ABSTRACT

In idiopathic pulmonary fibrosis (IPF), keratin (KRT)17+/KRT5+ basal and KRT17+/KRT5- aberrant basaloid cells are atypically present within the alveolar space. We previously described the fibrosis-enriched outgrowth of alveolar basal cells from peripheral fibrotic lung tissue. Using single cell RNA sequencing (scRNA-seq), we here characterize the transcriptome of these cultured alveolar basal cells under different culture conditions. METHODS: Fibrotic peripheral lung tissue pieces were placed in DMEM growth medium. Outgrown cells were analysed by scRNA-seq, TaqMan-PCR or immunofluorescence (IF) either directly or after medium change to an epithelial cell specific medium (Cnt-PR-A). RESULTS: A fraction of alveolar basal cells cultured in DMEM growth medium showed close transcriptomic similarities to IPF basal cells. However, although they expressed KRT5, the transcriptome of the majority of cells matched best to the transcriptome of recently described KRT17+/KRT5- aberrant basaloid cells, co-expressing the canonical basal cell marker KRT17 and mesenchymal cell marker (VIM, FN1). A smaller fraction of cells matched best to secretory epithelial cells. Two differentiation gradients from basal to aberrant basaloid-like cells and basal to secretory epithelial-like cells were apparent. Interestingly, these differentiation paths seemed reversed when the cell culture medium was changed to Cnt-PR-A. CONCLUSIONS: Our results suggest that cultured alveolar basal cells have the capacity to differentiate towards secretory epithelial-like cells and to aberrant basaloid-like cells. However, due to the persistent expression of KRT5, a complete differentiation towards aberrant basaloid cells did not seem to be achieved in our culture conditions. Importantly, differentiation seemed reversible by changing the cells microenvironment. Determining specific factors influencing these differentiation paths may help to define novel drug targets for IPF therapy.


Subject(s)
Alveolar Epithelial Cells , Idiopathic Pulmonary Fibrosis , Alveolar Epithelial Cells/metabolism , Epithelial Cells/metabolism , Humans , Idiopathic Pulmonary Fibrosis/metabolism , Lung/metabolism , Transcriptome
11.
Am J Pathol ; 192(8): 1110-1121, 2022 08.
Article in English | MEDLINE | ID: mdl-35649494

ABSTRACT

Alveolar capillary dysplasia (ACD) is a rare lung developmental disorder leading to persistent pulmonary arterial hypertension and fatal outcomes in newborns. The current study analyzed the microvascular morphology and the underlying molecular background of ACD. One ACD group (n = 7), one pulmonary arterial hypertension group (n = 20), and one healthy con1trol group (n = 16) were generated. Samples of histologically confirmed ACD were examined by exome sequencing and array-based comparative genomic hybridization. Vascular morphology was analyzed using scanning electron microscopy of microvascular corrosion casts. Gene expression and biological pathways were analyzed using two panels on inflammation/kinase-specific genes and a comparison analysis tool. Compartment-specific protein expression was analyzed using immunostaining. In ACD, there was an altered capillary network, a high prevalence of intussusceptive angiogenesis, and increased activity of C-X-C motif chemokine receptor 4 (CXCR4), hypoxia-inducible factor 1α (HIF1A), and angiopoietin signaling pathways compared with pulmonary arterial hypertension/healthy controls. Histologically, there was a markedly increased prevalence of endothelial tyrosine kinase receptor (TEK/TIE2)+ macrophages in ACD, compared with the other groups, whereas the CXCR4 ligand CXCL12 and HIF1A showed high expression in all groups. ACD is characterized by dysfunctional capillaries and a high prevalence of intussusceptive angiogenesis. The results indicate that endothelial CXCR4, HIF1A, and angiopoietin signaling as well as TIE2+ macrophages are crucial for the induction of intussusceptive angiogenesis and vascular remodeling. Future studies should address the use of anti-angiogenic agents in ACD, where TIE2 appears as a promising target.


Subject(s)
Persistent Fetal Circulation Syndrome , Pulmonary Arterial Hypertension , Angiopoietins , Comparative Genomic Hybridization , Humans , Infant, Newborn , Persistent Fetal Circulation Syndrome/pathology , Pulmonary Alveoli/abnormalities
12.
Front Bioeng Biotechnol ; 10: 844119, 2022.
Article in English | MEDLINE | ID: mdl-35350187

ABSTRACT

In idiopathic pulmonary fibrosis (IPF), basal-like cells are atypically present in the alveolar region, where they may affect adjacent stromal cells by paracrine mechanisms. We here aimed to confirm the presence of basal-like cells in peripheral IPF lung tissue in vivo, to culture and characterize the cells in vitro, and to investigate their paracrine effects on IPF fibroblasts in vitro and in bleomycin-injured rats in vivo. Basal-like cells are mainly localized in areas of pathological bronchiolization or honeycomb cysts in peripheral IPF lung tissue. Single-cell RNA sequencing (scRNA-seq) demonstrated an overall homogeneity, the expression of the basal cell markers cytokeratin KRT5 and KRT17, and close transcriptomic similarities to basal cells in the majority of cells cultured in vitro. Basal-like cells secreted significant levels of prostaglandin E2 (PGE2), and their conditioned medium (CM) inhibited alpha-smooth muscle actin (α-SMA) and collagen 1A1 (Col1A1) and upregulated matrix metalloproteinase-1 (MMP-1) and hepatocyte growth factor (HGF) by IPF fibroblasts in vitro. The instillation of CM in bleomycin-injured rat lungs resulted in reduced collagen content, improved lung architecture, and reduced α-SMA-positive cells. Our data suggested that basal-like cells may limit aberrant fibroblast activation and differentiation in IPF through paracrine mechanisms.

13.
Cells ; 11(4)2022 02 14.
Article in English | MEDLINE | ID: mdl-35203313

ABSTRACT

BACKGROUND: Fibroblastic foci (FF) are characteristic features of usual interstitial pneumonia (UIP)/idiopathic pulmonary fibrosis (IPF) and one cardinal feature thought to represent a key mechanism of pathogenesis. Hence, FF have a high impact on UIP/IPF diagnosis in current guidelines. However, although less frequent, these histomorphological hallmarks also occur in other fibrotic pulmonary diseases. Currently, there is therefore a gap in knowledge regarding the underlying molecular similarities and differences of FF in different disease entities. METHODS: In this work, we analyzed the compartment-specific gene expression profiles of FF in IPF and sarcoidosis in order to elucidate similarities and differences as well as shared pathomechanisms. For this purpose, we used laser capture microdissection, mRNA and protein expression analysis. Biological pathway analysis was performed using two different gene expression databases. As control samples, we used healthy lung tissue that was donated but not used for lung transplantation. RESULTS: Based on Holm Bonferroni corrected expression data, mRNA expression analysis revealed a significantly altered expression signature for 136 out of 760 genes compared to healthy controls while half of these showed a similar regulation in both groups. Immunostaining of selected markers from each group corroborated these results. However, when comparing all differentially expressed genes with the fdr-based expression data, only 2 of these genes were differentially expressed between sarcoidosis and IPF compared to controls, i.e., calcium transport protein 1 (CAT1) and SMAD specific E3 ubiquitin protein ligase 1 (SMURF1), both in the sarcoidosis group. Direct comparison of sarcoidosis and IPF did not show any differentially regulated genes independent from the statistical methodology. Biological pathway analysis revealed a number of fibrosis-related pathways pronounced in IPF without differences in the regulatory direction. CONCLUSIONS: These results demonstrate that FF of end-stage IPF and sarcoidosis lungs, although different in initiation, are similar in gene and protein expression, encouraging further studies on the use of antifibrotic agents in sarcoidosis.


Subject(s)
Idiopathic Pulmonary Fibrosis , Sarcoidosis, Pulmonary , Sarcoidosis , Humans , Idiopathic Pulmonary Fibrosis/genetics , Idiopathic Pulmonary Fibrosis/pathology , RNA, Messenger/genetics , Sarcoidosis, Pulmonary/genetics , Transcriptome/genetics , Ubiquitin-Protein Ligases/genetics
14.
Cell Mol Life Sci ; 79(3): 151, 2022 Feb 25.
Article in English | MEDLINE | ID: mdl-35212819

ABSTRACT

Endoplasmic reticulum (ER) and mitochondria (mito) play a vital role in alveolar type II cell (AEC2) homeostasis and are both stressed in patients with idiopathic pulmonary fibrosis (IPF). Up to now, no data are available with regard to ER-mito cross talk and tethering under conditions of IPF. We here demonstrate that ER-mitochondrial tethering is reduced upon experimental ER stress in vitro and in the IPF AECII ex vivo, and this is-at least in part-due to decreased phosphofurin acidic cluster sorting protein 2 (PACS-2, also called PACS2) protein levels. PACS2 levels are influenced by its interaction with the transient receptor potential cation channel subfamily V member 1 (TRPV1) and can be experimentally modified by the TRPV1-modulating drug capsaicin (CPS). Employing alveolar epithelial cells with overexpression of the terminal ER stress signaling factor Chop or the IPF-associated surfactant protein C mutation (SPCΔexon4) in vitro, we observed a restoration of PACS2 levels upon treatment with CPS. Similarly, treatment of precision cut lung slices from IPF patients with CPS ex vivo forwarded similar effects. Importantly, in all models such kind of intervention also greatly reduced the extent of alveolar epithelial apoptosis. We therefore conclude that therapeutic targeting of the PACS2-TRPV1 axis represents an interesting novel, epithelial-protective approach in IPF.


Subject(s)
Endoplasmic Reticulum Stress , Endoplasmic Reticulum/metabolism , Mitochondria/metabolism , TRPV Cation Channels/metabolism , Vesicular Transport Proteins/metabolism , Alveolar Epithelial Cells/cytology , Alveolar Epithelial Cells/metabolism , Animals , Apoptosis/drug effects , Capsaicin/pharmacology , Cell Line , Doxorubicin/pharmacology , Endoplasmic Reticulum Stress/drug effects , Humans , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/pathology , Lung/cytology , Lung/metabolism , Mice , Transcription Factor CHOP/genetics , Transcription Factor CHOP/metabolism , Vesicular Transport Proteins/genetics , Voltage-Dependent Anion Channel 1/metabolism
15.
Int J Mol Sci ; 23(3)2022 Jan 29.
Article in English | MEDLINE | ID: mdl-35163504

ABSTRACT

(1) Background: In COVID-19 survivors there is an increased prevalence of pulmonary fibrosis of which the underlying molecular mechanisms are poorly understood; (2) Methods: In this multicentric study, n = 12 patients who succumbed to COVID-19 due to progressive respiratory failure were assigned to an early and late group (death within ≤7 and >7 days of hospitalization, respectively) and compared to n = 11 healthy controls; mRNA and protein expression as well as biological pathway analysis were performed to gain insights into the evolution of pulmonary fibrogenesis in COVID-19; (3) Results: Median duration of hospitalization until death was 3 (IQR25-75, 3-3.75) and 14 (12.5-14) days in the early and late group, respectively. Fifty-eight out of 770 analyzed genes showed a significantly altered expression signature in COVID-19 compared to controls in a time-dependent manner. The entire study group showed an increased expression of BST2 and IL1R1, independent of hospitalization time. In the early group there was increased activity of inflammation-related genes and pathways, while fibrosis-related genes (particularly PDGFRB) and pathways dominated in the late group; (4) Conclusions: After the first week of hospitalization, there is a shift from pro-inflammatory to fibrogenic activity in severe COVID-19. IL1R1 and PDGFRB may serve as potential therapeutic targets in future studies.


Subject(s)
COVID-19/genetics , COVID-19/metabolism , Pulmonary Fibrosis/pathology , Aged , COVID-19/mortality , Female , Hospital Mortality/trends , Hospitalization , Humans , Lung/pathology , Male , Middle Aged , Pulmonary Fibrosis/metabolism , Respiratory Insufficiency/pathology , SARS-CoV-2/pathogenicity
16.
Elife ; 102021 12 21.
Article in English | MEDLINE | ID: mdl-34930527

ABSTRACT

For the first time, we have used phase-contrast X-ray tomography to characterize the three-dimensional (3d) structure of cardiac tissue from patients who succumbed to Covid-19. By extending conventional histopathological examination by a third dimension, the delicate pathological changes of the vascular system of severe Covid-19 progressions can be analyzed, fully quantified and compared to other types of viral myocarditis and controls. To this end, cardiac samples with a cross-section of 3.5mm were scanned at a laboratory setup as well as at a parallel beam setup at a synchrotron radiation facility the synchrotron in a parallel beam configuration. The vascular network was segmented by a deep learning architecture suitable for 3d datasets (V-net), trained by sparse manual annotations. Pathological alterations of vessels, concerning the variation of diameters and the amount of small holes, were observed, indicative of elevated occurrence of intussusceptive angiogenesis, also confirmed by high-resolution cone beam X-ray tomography and scanning electron microscopy. Furthermore, we implemented a fully automated analysis of the tissue structure in the form of shape measures based on the structure tensor. The corresponding distributions show that the histopathology of Covid-19 differs from both influenza and typical coxsackie virus myocarditis.


Subject(s)
COVID-19/complications , Myocarditis/pathology , Myocarditis/virology , Myocardium/pathology , SARS-CoV-2/isolation & purification , Artificial Intelligence , COVID-19/pathology , Heart/diagnostic imaging , Heart/virology , Humans , Imaging, Three-Dimensional , Myocarditis/diagnostic imaging , Myocarditis/etiology , Synchrotrons , Tomography, X-Ray Computed
17.
Sci Rep ; 11(1): 9532, 2021 05 05.
Article in English | MEDLINE | ID: mdl-33953302

ABSTRACT

The only potentially curative treatment for lung adenocarcinoma patients remains complete resection of early-stage tumors. However, many patients develop recurrence and die of their disease despite curative surgery. Underlying mechanisms leading to establishment of systemic disease after complete resection are mostly unknown. We therefore aimed at identifying molecular signatures of resected lung adenocarcinomas associated with the risk of an early relapse. The study comprised 89 patients with totally resected stage IA-IIIA lung adenocarcinomas. Patients suffering from an early relapse within two years after surgery were compared to patients without a relapse in two years. Patients were clinically and molecular pathologically characterized. Tumor tissues were immunohistochemically analyzed for the expression of Ki67, CD45, CD4, CD8, PD1, PD-L1, PD-L2 and CD34, by Nanostring nCounter PanCancer Immune Profiling Panel as well as a comprehensive methylome profiling using the Infinium MethylationEPIC BeadChip. We detected differential DNA methylation patterns as well as significantly differentially expressed genes associated with an early relapse after complete resection. Especially, CD1A was identified as a potential biomarker, whose reduced expression is associated with an early relapse. These findings might help to develop biomarkers improving risk assessment and patient selection for adjuvant therapy as well as establish novel targeted therapeutic strategies.


Subject(s)
Adenocarcinoma of Lung/genetics , Lung Neoplasms/genetics , Neoplasm Recurrence, Local/genetics , Adenocarcinoma of Lung/surgery , Biomarkers, Tumor/genetics , DNA Methylation , Epigenome , Gene Expression Regulation, Neoplastic , Humans , Lung Neoplasms/surgery , Transcriptome
18.
Virchows Arch ; 478(1): 89-99, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33169196

ABSTRACT

Chronic diffuse parenchymal lung disease (DPLD) is an umbrella term for a very heterogeneous group of lung diseases. Over the last decades, clinical, radiological and histopathological criteria have been established to define and separate these entities. More recently the clinical utility of this approach has been challenged as a unifying concept of pathophysiological mechanisms and a shared response to therapy across the disease spectrum have been described. In this review, we discuss molecular motifs for subtyping and the prediction of prognosis focusing on genetics and markers found in the blood, lavage and tissue. As a purely molecular classification so far lacks sufficient sensitivity and specificity for subtyping, it is not routinely used and not implemented in international guidelines. However, a better molecular characterization of lung disease with a more precise identification of patients with, for example, a risk for rapid disease progression would facilitate more accurate treatment decisions and hopefully contribute to better patients' outcomes.


Subject(s)
Lung Diseases, Interstitial/diagnosis , Lung/pathology , Biomarkers/metabolism , Disease Progression , Fibrosis/diagnosis , Fibrosis/metabolism , Fibrosis/pathology , Humans , Lung/metabolism , Lung Diseases, Interstitial/metabolism , Lung Diseases, Interstitial/pathology , Prognosis
19.
N Engl J Med ; 383(2): 120-128, 2020 07 09.
Article in English | MEDLINE | ID: mdl-32437596

ABSTRACT

BACKGROUND: Progressive respiratory failure is the primary cause of death in the coronavirus disease 2019 (Covid-19) pandemic. Despite widespread interest in the pathophysiology of the disease, relatively little is known about the associated morphologic and molecular changes in the peripheral lung of patients who die from Covid-19. METHODS: We examined 7 lungs obtained during autopsy from patients who died from Covid-19 and compared them with 7 lungs obtained during autopsy from patients who died from acute respiratory distress syndrome (ARDS) secondary to influenza A(H1N1) infection and 10 age-matched, uninfected control lungs. The lungs were studied with the use of seven-color immunohistochemical analysis, micro-computed tomographic imaging, scanning electron microscopy, corrosion casting, and direct multiplexed measurement of gene expression. RESULTS: In patients who died from Covid-19-associated or influenza-associated respiratory failure, the histologic pattern in the peripheral lung was diffuse alveolar damage with perivascular T-cell infiltration. The lungs from patients with Covid-19 also showed distinctive vascular features, consisting of severe endothelial injury associated with the presence of intracellular virus and disrupted cell membranes. Histologic analysis of pulmonary vessels in patients with Covid-19 showed widespread thrombosis with microangiopathy. Alveolar capillary microthrombi were 9 times as prevalent in patients with Covid-19 as in patients with influenza (P<0.001). In lungs from patients with Covid-19, the amount of new vessel growth - predominantly through a mechanism of intussusceptive angiogenesis - was 2.7 times as high as that in the lungs from patients with influenza (P<0.001). CONCLUSIONS: In our small series, vascular angiogenesis distinguished the pulmonary pathobiology of Covid-19 from that of equally severe influenza virus infection. The universality and clinical implications of our observations require further research to define. (Funded by the National Institutes of Health and others.).


Subject(s)
Coronavirus Infections/pathology , Endothelium, Vascular/pathology , Neovascularization, Pathologic , Pneumonia, Viral/pathology , Thrombosis/virology , Aged , Aged, 80 and over , Autopsy , Betacoronavirus , COVID-19 , Coronavirus Infections/mortality , Endothelium, Vascular/virology , Female , Humans , Influenza A Virus, H1N1 Subtype , Influenza, Human/mortality , Influenza, Human/pathology , Lung/pathology , Male , Middle Aged , Pandemics , Pneumonia, Viral/mortality , Respiratory Distress Syndrome/pathology , Respiratory Distress Syndrome/virology , Respiratory Insufficiency , SARS-CoV-2
20.
Am J Pathol ; 190(7): 1382-1396, 2020 07.
Article in English | MEDLINE | ID: mdl-32275906

ABSTRACT

Pulmonary hypertension and pulmonary vascular remodeling (PVR) are common in many lung diseases leading to right ventricular dysfunction and death. Differences in PVR result in significant prognostic divergences in both the pulmonary arterial and venous compartments, as in pulmonary arterial hypertension (PAH) and pulmonary veno-occlusive disease (PVOD), respectively. Our goal was to identify compartment-specific molecular hallmarks of PVR, considering the risk of life-threatening pulmonary edema in PVOD, if treated by conventional pulmonary hypertension therapy. Formalin-fixed and paraffin-embedded tissues from fresh explanted human lungs of patients with PVOD (n = 19), PAH (n = 20), idiopathic pulmonary fibrosis (n = 13), and chronic obstructive pulmonary disease (n = 15), were analyzed for inflammation and kinome-related gene regulation. The generated neuronal network differentiated PVOD from PAH samples with a sensitivity of 100% and a specificity of 92% in a randomly chosen validation set, a level far superior to established diagnostic algorithms. Further, various alterations were identified regarding the gene expression of explanted lungs with PVR, compared with controls. Specifically, the dysregulation of microtubule-associated serine/threonine kinase 2 and protein-o-mannose kinase SGK196 in all disease groups suggests a key role in pulmonary vasculopathy for the first time. Our findings promise to help develop novel target-specific interventions and innovative approaches to facilitate clinical diagnostics in an elusive group of diseases.


Subject(s)
Airway Remodeling/physiology , Hypertension, Pulmonary/physiopathology , Pulmonary Veno-Occlusive Disease/physiopathology , Adolescent , Adult , Aged , Child , Child, Preschool , Female , Humans , Hypertension, Pulmonary/classification , Hypertension, Pulmonary/diagnosis , Idiopathic Pulmonary Fibrosis/classification , Idiopathic Pulmonary Fibrosis/diagnosis , Idiopathic Pulmonary Fibrosis/physiopathology , Male , Middle Aged , Pulmonary Disease, Chronic Obstructive/classification , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/physiopathology , Pulmonary Veno-Occlusive Disease/classification , Pulmonary Veno-Occlusive Disease/diagnosis , Transcriptome , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL