Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Epilepsy Res ; 127: 331-338, 2016 11.
Article in English | MEDLINE | ID: mdl-27701046

ABSTRACT

PURPOSE: There is controversy about relative contributions of ictal scalp video EEG recording (vEEG), routine scalp outpatient interictal EEG (rEEG), intracranial EEG (iEEG) and MRI for predicting seizure-free outcomes after temporal lobectomy. We reviewed NIH experience to determine contributions at specific time points as well as long-term predictive value of standard pre-surgical investigations. METHODS: Raw data was obtained via retrospective chart review of 151 patients. After exclusions, 118 remained (median 5 years follow-up). MRI-proven mesial temporal sclerosis (MTSr) was considered a separate category for analysis. Logistic regression estimated odds ratios at 6-months, 1-year, and 2 years; proportional hazard models estimated long-term comparisons. Subset analysis of the proportional hazard model was performed including only patients with commonly encountered situations in each of the modalities, to maximize statistical inference. RESULTS: Any MRI finding, MRI proven MTS, rEEG, vEEG and iEEG did not predict two-year seizure-free outcome. MTSr was predictive at six months (OR=2.894, p=0. 0466), as were MRI and MTSr at one year (OR=10.4231, p=0. 0144 and OR=3.576, p=0. 0091). Correcting for rEEG and MRI, vEEG failed to predict outcome at 6 months, 1year and 2 years. Proportional hazard analysis including all available follow-up failed to achieve significance for any modality. In the subset analysis of 83 patients with commonly encountered results, vEEG modestly predicted long-term seizure-free outcomes with a proportional hazard ratio of 1.936 (p=0.0304). CONCLUSIONS: In this study, presurgical tools did not provide unambiguous long-term outcome predictions. Multicenter prospective studies are needed to determine optimal presurgical epilepsy evaluation.


Subject(s)
Electroencephalography , Epilepsy, Temporal Lobe/diagnosis , Epilepsy, Temporal Lobe/surgery , Magnetic Resonance Imaging , Adult , Anterior Temporal Lobectomy , Epilepsy, Temporal Lobe/physiopathology , Female , Follow-Up Studies , Humans , Kaplan-Meier Estimate , Logistic Models , Male , Preoperative Period , Prognosis , Proportional Hazards Models , Retrospective Studies , Sclerosis/diagnosis , Sclerosis/physiopathology , Sclerosis/surgery , Seizures/diagnosis , Seizures/physiopathology , Seizures/surgery , Time Factors , Treatment Outcome
2.
Neurorehabil Neural Repair ; 29(10): 911-22, 2015.
Article in English | MEDLINE | ID: mdl-25653225

ABSTRACT

BACKGROUND: Evidence supports peroneal nerve functional electrical stimulation (FES) as an effective alternative to ankle foot orthoses (AFO) for treatment of foot drop poststroke, but few long-term, randomized controlled comparisons exist. OBJECTIVE: Compare changes in gait quality and function between FES and AFOs in individuals with foot drop poststroke over a 12-month period. METHODS: Follow-up analysis of an unblinded randomized controlled trial (ClinicalTrials.gov #NCT01087957) conducted at 30 rehabilitation centers comparing FES to AFOs over 6 months. Subjects continued to wear their randomized device for another 6 months to final 12-month assessments. Subjects used study devices for all home and community ambulation. Multiply imputed intention-to-treat analyses were utilized; primary endpoints were tested for noninferiority and secondary endpoints for superiority. Primary endpoints: 10 Meter Walk Test (10MWT) and device-related serious adverse event rate. Secondary endpoints: 6-Minute Walk Test (6MWT), GaitRite Functional Ambulation Profile, and Modified Emory Functional Ambulation Profile (mEFAP). RESULTS: A total of 495 subjects were randomized, and 384 completed the 12-month follow-up. FES proved noninferior to AFOs for all primary endpoints. Both FES and AFO groups showed statistically and clinically significant improvement for 10MWT compared with initial measurement. No statistically significant between-group differences were found for primary or secondary endpoints. The FES group demonstrated statistically significant improvements for 6MWT and mEFAP Stair-time subscore. CONCLUSIONS: At 12 months, both FES and AFOs continue to demonstrate equivalent gains in gait speed. Results suggest that long-term FES use may lead to additional improvements in walking endurance and functional ambulation; further research is needed to confirm these findings.


Subject(s)
Electric Stimulation Therapy/methods , Gait Disorders, Neurologic/etiology , Gait Disorders, Neurologic/therapy , Peroneal Nerve/physiology , Stroke/complications , Aged , Ankle/physiopathology , Chronic Disease , Female , Foot Orthoses , Humans , Longitudinal Studies , Male , Middle Aged , Severity of Illness Index , Time Factors , Treatment Outcome , Walking/physiology
3.
Neurorehabil Neural Repair ; 28(7): 688-97, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24526708

ABSTRACT

BACKGROUND: Evidence supports peroneal nerve functional electrical stimulation (FES) as an effective alternative to ankle-foot orthoses (AFO) for treatment of foot drop poststroke, but few randomized controlled comparisons exist. OBJECTIVE: To compare changes in gait and quality of life (QoL) between FES and an AFO in individuals with foot drop poststroke. METHODS: In a multicenter randomized controlled trial (ClinicalTrials.gov #NCT01087957) with unblinded outcome assessments, 495 Medicare-eligible individuals at least 6 months poststroke wore FES or an AFO for 6 months. Primary endpoints: 10-Meter Walk Test (10MWT), a composite of the Mobility, Activities of Daily Living/Instrumental Activities of Daily Living, and Social Participation subscores on the Stroke Impact Scale (SIS), and device-related serious adverse event rate. Secondary endpoints: 6-Minute Walk Test, GaitRite Functional Ambulation Profile (FAP), Modified Emory Functional Ambulation Profile (mEFAP), Berg Balance Scale (BBS), Timed Up and Go, individual SIS domains, and Stroke-Specific Quality of Life measures. Multiply imputed intention-to-treat analyses were used with primary endpoints tested for noninferiority and secondary endpoints tested for superiority. RESULTS: A total of 399 subjects completed the study. FES proved noninferior to the AFO for all primary endpoints. Both the FES and AFO groups improved significantly on the 10MWT. Within the FES group, significant improvements were found for SIS composite score, total mFEAP score, individual Floor and Obstacle course time scores of the mEFAP, FAP, and BBS, but again, no between-group differences were found. CONCLUSIONS: Use of FES is equivalent to the AFO. Further studies should examine whether FES enables better performance in tasks involving functional mobility, activities of daily living, and balance.


Subject(s)
Electric Stimulation Therapy , Gait Disorders, Neurologic/rehabilitation , Peroneal Nerve/physiopathology , Stroke Rehabilitation , Aged , Ankle/innervation , Ankle/physiopathology , Chronic Disease , Female , Foot/innervation , Foot/physiopathology , Foot Orthoses , Gait Disorders, Neurologic/etiology , Gait Disorders, Neurologic/physiopathology , Humans , Male , Middle Aged , Quality of Life , Recovery of Function , Stroke/complications
4.
Neurorehabil Neural Repair ; 27(7): 579-91, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23558080

ABSTRACT

BACKGROUND: Studies have demonstrated the efficacy of functional electrical stimulation in the management of foot drop after stroke. OBJECTIVE: To compare changes in walking performance with the WalkAide (WA) foot-drop stimulator and a conventional ankle-foot orthosis (AFO). METHODS: Individuals with stroke within the previous 12 months and residual foot drop were enrolled in a multicenter, randomized controlled, crossover trial. Subjects were assigned to 1 of 3 parallel arms for 12 weeks (6 weeks/device): arm 1 (WA-AFO), n = 38; arm 2 (AFO-WA), n = 31; arm 3 (AFO-AFO), n = 24. Primary outcomes were walking speed and Physiological Cost Index for the Figure-of-8 walking test. Secondary measures included 10-m walking speed and perceived safety during this test, general mobility, and device preference for arms 1 and 2 for continued use. Walking tests were performed with (On) and without a device (Off) at 0, 3, 6, 9, and 12 weeks. RESULTS: Both WA and AFO had significant orthotic (On-Off difference), therapeutic (change over time when Off), and combined (change over time On vs baseline Off) effects on walking speed. An AFO also had a significant orthotic effect on Physiological Cost Index. The WA had a higher, but not significantly different therapeutic effect on speed than an AFO, whereas an AFO had a greater orthotic effect than the WA (significant at 12 weeks). Combined effects on speed after 6 weeks did not differ between devices. Users felt as safe with the WA as with an AFO, but significantly more users preferred the WA. CONCLUSIONS: Both devices produce equivalent functional gains.


Subject(s)
Ankle/innervation , Electric Stimulation Therapy , Foot Orthoses , Gait Disorders, Neurologic/etiology , Gait Disorders, Neurologic/therapy , Stroke/complications , Adult , Aged , Cross-Over Studies , Female , Foot Joints/innervation , Humans , Male , Middle Aged , Physical Therapy Modalities , Stroke/therapy , Time Factors , Treatment Outcome , Walking
6.
Cortex ; 46(3): 343-53, 2010 Mar.
Article in English | MEDLINE | ID: mdl-19570530

ABSTRACT

INTRODUCTION: Although the substrates that mediate singing abilities in the human brain are not well understood, invasive brain mapping techniques used for clinical decision making such as intracranial electro-cortical testing and Wada testing offer a rare opportunity to examine music-related function in a select group of subjects, affording exceptional spatial and temporal specificity. METHODS: We studied eight patients with medically refractory epilepsy undergoing indwelling subdural electrode seizure focus localization. All patients underwent Wada testing for language lateralization. Functional assessment of language and music tasks was done by electrode grid cortical stimulation. One patient was also tested non-invasively with functional magnetic resonance imaging (fMRI). Functional organization of singing ability compared to language ability was determined based on four regions-of-interest (ROIs): left and right inferior frontal gyrus (IFG), and left and right posterior superior temporal gyrus (pSTG). RESULTS: In some subjects, electrical stimulation of dominant pSTG can interfere with speech and not singing, whereas stimulation of non-dominant pSTG area can interfere with singing and not speech. Stimulation of the dominant IFG tends to interfere with both musical and language expression, while non-dominant IFG stimulation was often observed to cause no interference with either task; and finally, that stimulation of areas adjacent to but not within non-dominant pSTG typically does not affect either ability. Functional fMRI mappings of one subject revealed similar music/language dissociation with respect to activation asymmetry within the ROIs. CONCLUSION: Despite inherent limitations with respect to strictly research objectives, invasive clinical techniques offer a rare opportunity to probe musical and language cognitive processes of the brain in a select group of patients.


Subject(s)
Functional Laterality , Music , Speech/physiology , Temporal Lobe/physiology , Voice/physiology , Adult , Auditory Perception/physiology , Electric Stimulation , Electrodes, Implanted , Epilepsy , Female , Humans , Language , Language Tests , Magnetic Resonance Imaging , Male , Young Adult
7.
Artif Organs ; 27(11): 1005-15, 2003 Nov.
Article in English | MEDLINE | ID: mdl-14616519

ABSTRACT

In the field of visual prosthesis research, it has generally been held that animal models are limited to testing the safety of implantable hardware due to the inability of the animal to provide a linguistic report of perceptions. In contrast, vision scientists make extensive use of trained animal models to investigate the links between visual stimuli, neural activities, and perception. We describe an animal model for cortical visual prosthesis research in which novel animal psychophysical testing has been employed to compensate for the lack of a linguistic report. One hundred and fifty-two intracortical microelectrodes were chronically implanted in area V1 of a male macaque. Receptive field mapping was combined with eye-tracking to develop a reward-based training procedure. The animal was trained to use electrically induced point-flash percepts, called phosphenes, in performing a memory saccade task. It is our long-term goal to use this animal model to investigate stimulation strategies in developing a multichannel sensory cortical interface.


Subject(s)
Brain Mapping/methods , Implants, Experimental , Models, Animal , Animals , Electric Stimulation , Electrodes, Implanted , Macaca , Male , Memory/physiology , Microelectrodes , Phosphenes/physiology
8.
Ann Neurol ; 54(3): 297-309, 2003 Sep.
Article in English | MEDLINE | ID: mdl-12953262

ABSTRACT

We hypothesized that it would be possible to detect the distribution of cortical activation by using a sensitive, rapid, high-resolution infrared imaging technique to monitor changes in local cerebral blood flow induced by changes in focal cortical metabolism. In a prospective study, we recorded in 21 patients the emission of infrared radiation from the exposed human cerebral cortex at baseline, during language and motor tasks, and during stimulation of the contralateral median nerve using an infrared camera (sensitivity 0.02 degrees C). The language and sensorimotor cortex was identified by standard mapping methods (cortical stimulation, median nerve somatosensory-evoked potential, functional magnetic resonance imaging), which were compared with infrared functional localization. The temperature gradients measured during surgery are dominated by changes in local cerebral blood flow associated with evoked functional activation. The distribution of the evoked temperature changes overlaps with, but extends beyond, functional regions identified by standard mapping techniques. The distribution observed via infrared mapping is consistent with distributed and complex functional representation of the cerebral cortex, rather than the traditional concept of discrete functional loci demonstrated by brief cortical stimulation during surgery and by noninvasive functional imaging techniques. By providing information on the spatial and temporal patterns of sensory-motor and language representation, infrared imaging may prove to be a useful approach to study brain function.


Subject(s)
Brain Mapping/methods , Brain/physiology , Infrared Rays , Thermography/methods , Adult , Aged , Brain/blood supply , Cerebrovascular Circulation/physiology , Electric Stimulation , Evoked Potentials, Somatosensory/physiology , Female , Humans , Intraoperative Period , Magnetic Resonance Imaging , Male , Middle Aged , Psychomotor Performance/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...