Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
IJU Case Rep ; 6(6): 436-439, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37928284

ABSTRACT

Introduction: Early diagnosis of patients with urolithiasis or hypouricemia owing to inborn errors of hypoxanthine metabolism is important in preventing renal failure or drug-induced toxicity. Case presentation: We identified three patients with xanthinuria using gas chromatography/mass spectrometry-based urine metabolomics: a 72-year-old male with bladder stone, a severe hypouricemic 59-year-old female with type 2 diabetes mellitus, and an 8-year and 9-month-old female who was first discovered to harbor a mutation in the xanthine dehydrogenase gene using whole-exome sequencing, but had a normal molybdenum cofactor sulfurase gene. Hydantoin-5-propionate was detected in the first and third patients but not in the second, suggesting that the first and second patients had type I and II xanthinuria, respectively. Conclusion: Gas chromatography/mass spectrometry-based metabolomics can be used for undiagnosed patients with xanthinuria, identification of the type of xanthinuria without allopurinol loading, and the quick functional evaluation of mutations in the xanthinuria-related genes.

2.
Intractable Rare Dis Res ; 10(2): 126-130, 2021 May.
Article in English | MEDLINE | ID: mdl-33996359

ABSTRACT

We report a case of saccharopinuria with hyperammonemia and hypercitrullinemia in a Japanese woman who presented with elderly-onset epilepsy, progressive cognitive decline, and gait ataxia. Blood amino acid analysis revealed an increase in citrulline, cystine, and lysine levels, and urine amino acid analysis showed increased citrulline and cystine levels. Urine metabolomics revealed an increased saccharopine level, leading to the definitive diagnosis of saccharopinuria. In western blots of liver biopsy samples, normal citrin levels were observed, suggesting that adult-onset citrullinemia type 2 (CTLN2) was not present. In addition, decreased argininosuccinate synthetase (ASS) levels were observed, and ASS1 gene, a causative gene for citrullinemia type 1 (CTLN1), was analyzed, but no gene mutations were found. Because the causes of hypercitrullinemia were not clear, it might be secondary to saccharopinuria. Muscle biopsy findings of the biceps brachii revealed diminished cytochrome c oxidase (COX) activity, mitochondrial abnormalities on electron microscopy and p62- positive structures in immunohistochemical analyses. Saccharopinuria is generally considered a benign metabolic variant, but our case showed elevated lysine and saccharopine levels causing ornithine circuit damage, mitochondrial dysfunction, and autophagy disorders. This may lead to so far unknown neurological disorders.

3.
Anal Biochem ; 604: 113739, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32339489

ABSTRACT

α-Aminoadipic semialdehyde and its cyclic form (Δ1-piperideine-6-carboxylate) accumulate in patients with α-aminoadipic semialdehyde dehydrogenase (AASADH; antiquitin; ALDH7A1) deficiency. Δ1-Piperideine-6-carboxylate is known to react with pyridoxal 5'-phosphate (PLP) to form a Knoevenagel condensation product, resulting in pyridoxine-dependent epilepsy. Despite dramatic clinical improvement following pyridoxine supplementation, many patients still suffer some degree of intellectual disability due to delayed diagnosis. In order to expedite the diagnosis of patients with suspected AASADH deficiency and minimize the delay in treatment, we used gas chromatography-mass spectrometry-based metabolomics to search for potentially diagnostic biomarkers in urine from four patients with ALDH7A1 mutations, and identified Δ2-piperideine-6-carboxylate, 6-oxopipecolate, and pipecolate as candidate biomarkers. In a patient at postnatal day six, but before pyridoxine treatment, Δ2-piperideine-6-carboxylate and pipecolate were present at very high concentrations, indicating that these compounds may be good biomarkers for untreated AASADH deficiency patients. On the other hand, following pyridoxine/PLP treatment, 6-oxopipecolate was shown to be greatly elevated. We suggest that noninvasive urine metabolomics screening for Δ2-piperideine-6-carboxylate, 6-oxopipecolate, and pipecolate will be useful for prompt and reliable diagnosis of AASADH deficiency in patients within any age group. The most appropriate combination among Δ2-piperideine-6-carboxylate, 6-oxopipecolate, and pipecolate as biomarkers for AASADH deficiency patients appears to depend on the age of the patient and whether pyridoxine/PLP supplementation has been implemented. We anticipate that the present bioanalytical information will also be useful to researchers studying glutamate, proline, lysine and ornithine metabolism in mammals and other organisms.


Subject(s)
Epilepsy/diagnosis , L-Aminoadipate-Semialdehyde Dehydrogenase/deficiency , Pipecolic Acids/urine , Biomarkers/urine , Epilepsy/urine , Humans , Infant, Newborn , L-Aminoadipate-Semialdehyde Dehydrogenase/genetics , Lysine/metabolism , Metabolomics , Mutation
4.
Brain Dev ; 41(3): 280-284, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30384990

ABSTRACT

Dihydropyrimidinase deficiency is a rare autosomal recessive disease affecting the second step of pyrimidine degradation. It is caused by mutations in the DPYS gene. Only approximately 30 cases have been reported to date, with a phenotypical variability ranging from asymptomatic to severe neurological illness. We report a case of dihydropyrimidinase deficiency incidentally detected by urine metabolome analysis. Gas chromatography-mass spectrometry-based urine metabolomics demonstrated significant elevations of dihydrouracil and dihydrothymine, which were subsequently confirmed by a quantitative analysis using liquid chromatography-tandem mass spectrometry. Genetic testing of the DPYS gene revealed two mutations: a novel mutation (c.175G > T) and a previously reported mutation (c.1469G > A). Dihydropyrimidinase deficiency is probably underdiagnosed, considering its wide phenotypical variability, nonspecific neurological presentations, and an estimated prevalence of 2/20,000. As severe 5-fluorouracil-associated toxicity has been reported in patients and carriers of congenital pyrimidine metabolic disorders, urinary pyrimidine analysis should be considered for those who will undergo 5-fluorouracil treatment.


Subject(s)
Metabolism, Inborn Errors/complications , Metabolism, Inborn Errors/urine , Metabolome , Purine-Pyrimidine Metabolism, Inborn Errors/complications , Adolescent , Chromatography, Liquid , Humans , Mass Spectrometry , Metabolism, Inborn Errors/diagnostic imaging , Muscle Cramp/etiology , Neural Conduction , Purine-Pyrimidine Metabolism, Inborn Errors/diagnostic imaging , Purine-Pyrimidine Metabolism, Inborn Errors/urine , Pyrimidines/urine
5.
Proc Natl Acad Sci U S A ; 114(16): E3233-E3242, 2017 04 18.
Article in English | MEDLINE | ID: mdl-28373563

ABSTRACT

The mammalian gene Nit1 (nitrilase-like protein 1) encodes a protein that is highly conserved in eukaryotes and is thought to act as a tumor suppressor. Despite being ∼35% sequence identical to ω-amidase (Nit2), the Nit1 protein does not hydrolyze efficiently α-ketoglutaramate (a known physiological substrate of Nit2), and its actual enzymatic function has so far remained a puzzle. In the present study, we demonstrate that both the mammalian Nit1 and its yeast ortholog are amidases highly active toward deaminated glutathione (dGSH; i.e., a form of glutathione in which the free amino group has been replaced by a carbonyl group). We further show that Nit1-KO mutants of both human and yeast cells accumulate dGSH and the same compound is excreted in large amounts in the urine of Nit1-KO mice. Finally, we show that several mammalian aminotransferases (transaminases), both cytosolic and mitochondrial, can form dGSH via a common (if slow) side-reaction and provide indirect evidence that transaminases are mainly responsible for dGSH formation in cultured mammalian cells. Altogether, these findings delineate a typical instance of metabolite repair, whereby the promiscuous activity of some abundant enzymes of primary metabolism leads to the formation of a useless and potentially harmful compound, which needs a suitable "repair enzyme" to be destroyed or reconverted into a useful metabolite. The need for a dGSH repair reaction does not appear to be limited to eukaryotes: We demonstrate that Nit1 homologs acting as excellent dGSH amidases also occur in Escherichia coli and other glutathione-producing bacteria.


Subject(s)
Aminohydrolases/metabolism , Glutathione/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Transaminases/metabolism , Aminohydrolases/physiology , Animals , Deamination , Humans , Hydrolysis , Mice , Mice, Knockout , Substrate Specificity
6.
Brain Dev ; 39(1): 58-61, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27553092

ABSTRACT

ß-Ureidopropionase deficiency is a rare autosomal recessive disease affecting the last step of pyrimidine degradation, and it is caused by a mutation in the UPB1 gene. Approximately 30 cases have been reported to date, with a phenotypical variability ranging from asymptomatic to severe neurological illness. Non-neurological symptoms have been rarely reported. We describe a case of this disease with developmental delay and dysmorphic features. Gas chromatography-mass spectrometry-based urine metabolomics demonstrated significant (⩾+4.5 standard deviation after logarithmic transformation) elevations of ß-ureidopropionic acid and ß-ureidoisobutyric acid, strongly suggesting a diagnosis of ß-ureidopropionase deficiency. Subsequent quantitative analysis of pyrimidines by liquid chromatography-tandem mass spectrometry supported this finding. Genetic testing of the UPB1 gene confirmed compound heterozygosity of a novel mutation (c.976C>T) and a previously-reported mutation (c.977G>A) that is common in East Asians. ß-Ureidopropionase deficiency is probably underdiagnosed, considering a wide phenotypical variability, non-specific neurological presentations, and an estimated prevalence of 1/5000-6000. Urine metabolomics should be considered for patients with unexplained neurological symptoms.


Subject(s)
Abnormalities, Multiple/diagnosis , Abnormalities, Multiple/physiopathology , Amidohydrolases/deficiency , Brain Diseases/diagnosis , Brain Diseases/physiopathology , Metabolome , Movement Disorders/diagnosis , Movement Disorders/physiopathology , Purine-Pyrimidine Metabolism, Inborn Errors/diagnosis , Purine-Pyrimidine Metabolism, Inborn Errors/physiopathology , Urine/chemistry , Abnormalities, Multiple/genetics , Amidohydrolases/genetics , Asian People/genetics , Brain Diseases/genetics , DNA Mutational Analysis , Diagnosis, Differential , Female , Gas Chromatography-Mass Spectrometry , Humans , Infant , Japan , Microarray Analysis , Movement Disorders/genetics , Purine-Pyrimidine Metabolism, Inborn Errors/genetics
7.
Brain Dev ; 38(9): 871-4, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27056292

ABSTRACT

BACKGROUND: Succinic semialdehyde dehydrogenase (SSADH) deficiency is a rare autosomal recessive disorder that affects the degradation of gamma-aminobutyric acid and leads to the accumulation of gamma-hydroxybutyric acid (GHB) in body fluids. Diagnosis of SSADH deficiency is challenging, since the neurological symptoms are non-specific. CASE: The patient is a nine-year-old Japanese boy who presented with developmental delay, autism, epilepsy, and episodic gait disturbance. Brain magnetic resonance imaging showed hyperintense lesions in the bilateral thalami, globus pallidi, substantia nigra, and dentate nuclei. Urine metabolome analysis revealed elevated GHB, which led to a biochemical diagnosis of SSADH deficiency. Genetic analysis of the ALDH5A1 gene revealed a novel missense mutation c.1586G>A inherited from his father. It also demonstrated three single nucleotide polymorphisms (SNPs) (c.106G>C, c.538C>T, and c.545C>T), all of which were inherited from his mother and are known to reduce SSADH enzyme activity. There were no duplications or deletions in other exons in the patient or his parents. No variants in the upstream, intronic, or downstream regions of the ALDH5A1 gene were found in the patient. Enzymatic assay revealed a marked reduction of SSADH enzyme activity (≈2% of the lower limit of the normal range). CONCLUSION: Although other mechanisms cannot be fully excluded, the clinical manifestation of SSADH deficiency in this patient may be attributed to the combined effect of the mutation and the three enzyme activity-reducing SNPs. Urine metabolome analysis effectively detected his elevated GHB and is thus considered to be a good screening method for this underdiagnosed and potentially manageable metabolic disorder.


Subject(s)
Amino Acid Metabolism, Inborn Errors/genetics , Developmental Disabilities/genetics , Polymorphism, Single Nucleotide , Succinate-Semialdehyde Dehydrogenase/deficiency , Amino Acid Metabolism, Inborn Errors/diagnosis , Asian People/genetics , Developmental Disabilities/diagnosis , Diagnosis, Differential , Genotyping Techniques , Humans , Japan , Male , Mutation, Missense , Succinate-Semialdehyde Dehydrogenase/genetics
9.
Int J Environ Res Public Health ; 11(4): 3661-77, 2014 Apr 02.
Article in English | MEDLINE | ID: mdl-24699029

ABSTRACT

First, the urinary metabolic profiling by gas chromatography-mass spectrometry (GC-MS), was performed to compare ten cadmium (Cd) toxicosis cases from a Cd-polluted area in Mae Sot (Thailand) with gender-matched healthy controls. Orthogonal partial list square-discrimination analysis was used to identify new biomarker candidates in highly Cd exposed toxicosis cases with remarkable renal tubular dysfunction. The results of the first step of this study showed that urinary citrate was a negative marker and myo-inositol was a positive marker for Cd toxicosis in Thailand. In the second step, we measured urinary citrate in the residents (168 Cd-exposed subjects and 100 controls) and found significantly lower levels of urinary citrate and higher ratios of calcium/citrate and magnesium/citrate, which are risk factors for nephrolithiasis, in highly Cd-exposed residents. Additionally, this inverse association of urinary citrate with urinary Cd was observed after adjustment for age, smoking and renal tubular dysfunction, suggesting a direct effect of Cd on citrate metabolism. These results indicate that urinary citrate is a useful biomarker for the adverse health effects of Cd exposure in a Thai population with a high prevalence of nephrolithiasis.


Subject(s)
Cadmium Poisoning/urine , Citric Acid/urine , Environmental Exposure/analysis , Inositol/urine , Adult , Aged , Aged, 80 and over , Biomarkers/urine , Cadmium/urine , Calcium/urine , Environmental Exposure/adverse effects , Environmental Pollutants/urine , Female , Gas Chromatography-Mass Spectrometry , Humans , Magnesium/urine , Male , Metabolome , Middle Aged , Nephrolithiasis/epidemiology , Nephrolithiasis/urine , Thailand/epidemiology
10.
J Inherit Metab Dis ; 37(5): 801-12, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24526388

ABSTRACT

ß-ureidopropionase (ßUP) deficiency is an autosomal recessive disease characterized by N-carbamyl-ß-amino aciduria. To date, only 16 genetically confirmed patients with ßUP deficiency have been reported. Here, we report on the clinical, biochemical and molecular findings of 13 Japanese ßUP deficient patients. In this group of patients, three novel missense mutations (p.G31S, p.E271K, and p.I286T) and a recently described mutation (p.R326Q) were identified. The p.R326Q mutation was detected in all 13 patients with eight patients being homozygous for this mutation. Screening for the p.R326Q mutation in 110 Japanese individuals showed an allele frequency of 0.9 %. Transient expression of mutant ßUP enzymes in HEK293 cells showed that the p.E271K and p.R326Q mutations cause profound decreases in activity (≤ 1.3 %). Conversely, ßUP enzymes containing the p.G31S and p.I286T mutations possess residual activities of 50 and 70 %, respectively, suggesting we cannot exclude the presence of additional mutations in the non-coding region of the UPB1 gene. Analysis of a human ßUP homology model revealed that the effects of the mutations (p.G31S, p.E271K, and p.R326Q) on enzyme activity are most likely linked to improper oligomer assembly. Highly variable phenotypes ranging from neurological involvement (including convulsions and autism) to asymptomatic, were observed in diagnosed patients. High prevalence of p.R326Q in the normal Japanese population indicates that ßUP deficiency is not as rare as generally considered and screening for ßUP deficiency should be included in diagnosis of patients with unexplained neurological abnormalities.


Subject(s)
Abnormalities, Multiple/epidemiology , Abnormalities, Multiple/genetics , Amidohydrolases/deficiency , Brain Diseases/epidemiology , Brain Diseases/genetics , Movement Disorders/epidemiology , Movement Disorders/genetics , Mutation/genetics , Purine-Pyrimidine Metabolism, Inborn Errors/epidemiology , Purine-Pyrimidine Metabolism, Inborn Errors/genetics , Alleles , Amidohydrolases/chemistry , Amidohydrolases/genetics , Child , Child, Preschool , Female , Gene Frequency , HEK293 Cells , Humans , Infant , Infant, Newborn , Japan/epidemiology , Male , Models, Molecular , Mutation, Missense/genetics , Nervous System Diseases/etiology , Nervous System Diseases/genetics , Phenotype , Prevalence
11.
Nihon Eiseigaku Zasshi ; 69(1): 60-74, 2014.
Article in Japanese | MEDLINE | ID: mdl-24476596

ABSTRACT

In Japan, screening for six diseases including four inborn errors of metabolism has been performed since 1977 for all neonates to prevent severe mental handicaps or death. A rapid screening procedure for analysis of several amino acids and acylcarnitines in blood spots by tandem mass spectrometry was developed by Millington DS et al. in the early 1990s. Although it is called expanded (or extended) newborn screening, the procedure is insufficiently sensitive to or specific for several diseases. Screening for all diseases that can be screened using this procedure is suggested to be cost-ineffective. Many European countries target only two diseases: medium-chain acyl-CoA dehydrogenase deficiency and phenylketonuria; their prevalence in Caucasian populations is very high, but some countries target more than twenty diseases and others an intermediate number. A pilot study targeting 22 diseases suggests that the combined incidence is one per 9,000 (0.01%) in Japan. This primary screening requires secondary screening to confirm the disease using urine, and either organic acids with solvent extraction or metabolome without fractionation are analyzed by gas chromatography-mass spectrometry. There is no need for primary or secondary screening tests to be performed at the same laboratory because the skills required are quite different. Understanding of the methodological problems of tandem mass screening and amelioration of variation and false positivity rate of this screening method among laboratories are critical to the success of the screening system in Japan. GC/MS-based urine metabolomics is expected to become one of the primary screening methodologies for neonates/infants who are already ill.


Subject(s)
Metabolism, Inborn Errors/metabolism , Metabolome/physiology , Neonatal Screening , Tandem Mass Spectrometry , Europe , Humans , Incidence , Infant, Newborn , Japan , Metabolism, Inborn Errors/diagnosis , Neonatal Screening/methods , Tandem Mass Spectrometry/methods
12.
Metab Brain Dis ; 29(4): 991-1006, 2014 Dec.
Article in English | MEDLINE | ID: mdl-24234505

ABSTRACT

Glutamine metabolism is generally regarded as proceeding via glutaminase-catalyzed hydrolysis to glutamate and ammonia, followed by conversion of glutamate to α-ketoglutarate catalyzed by glutamate dehydrogenase or by a glutamate-linked aminotransferase (transaminase). However, another pathway exists for the conversion of glutamine to α-ketoglutarate that is often overlooked, but is widely distributed in nature. This pathway, referred to as the glutaminase II pathway, consists of a glutamine transaminase coupled to ω-amidase. Transamination of glutamine results in formation of the corresponding α-keto acid, namely, α-ketoglutaramate (KGM). KGM is hydrolyzed by ω-amidase to α-ketoglutarate and ammonia. The net glutaminase II reaction is: L - Glutamine + α - keto acid + H2O → α - ketoglutarate + L - amino acid + ammonia. In this mini-review the biochemical importance of the glutaminase II pathway is summarized, with emphasis on the key component KGM. Forty years ago it was noted that the concentration of KGM is increased in the cerebrospinal fluid (CSF) of patients with hepatic encephalopathy (HE) and that the level of KGM in the CSF correlates well with the degree of encephalopathy. In more recent work, we have shown that KGM is markedly elevated in the urine of patients with inborn errors of the urea cycle. It is suggested that KGM may be a useful biomarker for many hyperammonemic diseases including hepatic encephalopathy, inborn errors of the urea cycle, citrin deficiency and lysinuric protein intolerance.


Subject(s)
Ammonia/metabolism , Hepatic Encephalopathy/metabolism , Hyperammonemia/metabolism , Ketoglutaric Acids/metabolism , Urea Cycle Disorders, Inborn/metabolism , Amidohydrolases/metabolism , Aminohydrolases/metabolism , Animals , Biomarkers , Carbon/metabolism , Glutamine/metabolism , Hepatic Encephalopathy/etiology , Humans , Hyperammonemia/classification , Hyperammonemia/diagnosis , Keto Acids/metabolism , Ketoglutaric Acids/cerebrospinal fluid , Ketoglutaric Acids/urine , Kynurenine/metabolism , Liver Diseases/cerebrospinal fluid , Mammals/metabolism , Methionine/metabolism , Nitrogen/metabolism , Sulfur/metabolism , Transaminases/metabolism , Transaminases/physiology
13.
Anal Bioanal Chem ; 403(7): 1775-6, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22488109
14.
Mol Genet Metab ; 106(1): 43-7, 2012 May.
Article in English | MEDLINE | ID: mdl-22472424

ABSTRACT

We report here a 6-year-old boy exhibiting severe dystonia, profound intellectual and developmental disability with liver disease, and sensorineural deafness. A deficient creatine peak in brain (1)H-MR spectroscopy and high ratio of creatine/creatinine concentration in his urine lead us to suspect a creatine transporter (solute carrier family 6, member 8; SLC6A8) deficiency, which was confirmed by the inability to take up creatine into fibroblasts. We found a large ~19 kb deletion encompassing exons 5-13 of SLC6A8 and exons 5-8 of the B-cell receptor-associated protein (BAP31) gene. This case is the first report in which the SLC6A8 and BAP31 genes are both deleted. The phenotype of BAP31 mutations has been reported only as a part of Xq28 deletion syndrome or contiguous ATP-binding cassette, sub-family D, member 1 (ABCD1)/DXS1375E (BAP31) deletion syndrome [MIM ID #300475], where liver dysfunction and sensorineural deafness have been suggested to be attributed to the loss of function of BAP31. Our case supports the idea that the loss of BAP31 is related to liver dysfunction and hearing loss.


Subject(s)
Dystonia , Gene Deletion , Hearing Loss, Sensorineural , Membrane Proteins/genetics , Nerve Tissue Proteins/genetics , Plasma Membrane Neurotransmitter Transport Proteins/genetics , Child , Creatine/urine , Creatinine/urine , Dystonia/genetics , Dystonia/metabolism , Hearing Loss, Sensorineural/genetics , Hearing Loss, Sensorineural/metabolism , Humans , Liver/metabolism , Liver/pathology , Male
15.
Mol Genet Metab ; 104(4): 492-500, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21908222

ABSTRACT

The citrin/mitochondrial glycerol-3-phosphate dehydrogenase (mGPD) double-knockout mouse displays phenotypic attributes of both neonatal intrahepatic cholestasis and adult-onset type II citrullinemia, making it a suitable model of human citrin deficiency. In the present study, we investigated metabolic disturbances in the livers of wild-type, citrin (Ctrn) knockout, mGPD knockout, and Ctrn/mGPD double-knockout mice following oral sucrose versus saline administration using metabolomic approaches. By using gas chromatography/mass spectrometry and capillary electrophoresis/mass spectrometry, we found three general groupings of metabolite changes in the livers of the double-knockout mice following sucrose administration that were subsequently confirmed using liquid chromatography/mass spectrometry or enzymatic methods: a marked increase of hepatic glycerol 3-phosphate, a generalized decrease of hepatic tricarboxylic acid cycle intermediates, and alterations of hepatic amino acid levels related to the urea cycle or lysine catabolism including marked increases in citrulline and lysine. Furthermore, concurrent oral administration of sodium pyruvate with sucrose ameliorated the hyperammonemia induced by sucrose, as had been shown previously, as well as almost completely normalizing the hepatic metabolite perturbations found. Overall, we have identified additional metabolic disturbances in double-KO mice following oral sucrose administration, and provided further evidence for the therapeutic use of sodium pyruvate in our mouse model of citrin deficiency.


Subject(s)
Calcium-Binding Proteins/deficiency , Glycerolphosphate Dehydrogenase/genetics , Liver/metabolism , Metabolome , Mitochondria/metabolism , Organic Anion Transporters/deficiency , Ammonia/blood , Animals , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Citric Acid Cycle , Disease Models, Animal , Electrophoresis, Capillary , Gas Chromatography-Mass Spectrometry , Glycerolphosphate Dehydrogenase/metabolism , Glycolysis , Humans , Liver/drug effects , Metabolomics , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/enzymology , Organic Anion Transporters/genetics , Organic Anion Transporters/metabolism , Pyruvic Acid/pharmacology , Sucrose/administration & dosage , Urea/metabolism
16.
Anal Bioanal Chem ; 400(7): 1881-94, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21365350

ABSTRACT

Citrin is the hepatic mitochondrial aspartate-glutamate carrier that is encoded by the gene SLC25A13. Citrin deficiency often leads to hyperammonemia, for which the current treatment concept is different from that for primary hyperammonemias. Metabolite level diagnosis, often referred to as chemical diagnosis, is not always successful in identifying citrin deficiency immediately or in a timely fashion. We previously made the chemical diagnosis of citrin deficiency in ten patients from nine families. In order to devise a more rapid and more accurate chemical diagnosis of this disorder than is currently available, we reinvestigated the gas chromatography/mass spectrometry-based urine metabolome in these patients. In patients aged 2 to 5 months, prominent biomarkers detected included one or more of the following metabolites: tyrosine, p-hydroxyphenyllactate, p-hydroxyphenylpyruvate, and N-acetyltyrosine, galactose, galactitol and galactonate, glucose, glucitol, and cystathionine. These biomarkers are less prominent in older patients, but are not increased in argininosuccinate synthetase deficiency or other hyperammonemias. α-Ketoglutaramate (KGM), a recently recognized urinary biomarker of primary hyperammonemias associated with defects of the urea cycle, was increased in most patients with citrin deficiency studied here in spite of normal urinary levels of glutamine (the immediate precursor of KGM), 5-oxoproline, glutamate, aspartate, and asparagine. Other important urinary biomarkers that should be measured for differential diagnosis of hyperammonemias, including orotate, uracil, and ß-ureidopropionate, were not increased. The presence of citrulline and citrulline-derived metabolites was noted in all cases. The present study shows that noninvasive urine metabolomics, together with an analysis of selected metabolites or groups of metabolites, provides a more reliable and rapid chemical diagnosis of citrin deficiency than was previously available and more readily differentiates this disorder from other hyperammonemic syndromes.


Subject(s)
Calcium-Binding Proteins/deficiency , Deficiency Diseases/diagnosis , Gas Chromatography-Mass Spectrometry/methods , Metabolomics , Organic Anion Transporters/deficiency , Deficiency Diseases/urine , Humans
17.
Anal Bioanal Chem ; 400(7): 1843-51, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21298421

ABSTRACT

α-Ketoglutaramate (KGM) is the α-keto acid analogue of glutamine, which exists mostly in equilibrium with a lactam form (2-hydroxy-5-oxoproline) under physiological conditions. KGM was identified in human urine and its concentration quantified by gas chromatography/mass spectrometry (GC/MS). The keto acid was shown to be markedly elevated in urine obtained from patients with primary hyperammonemia due to an inherited metabolic defect in any one of the five enzymes of the urea cycle. Increased urinary KGM was also noted in other patients with primary hyperammonemia, including three patients with a defect resulting in lysinuric protein intolerance and one of two patients with a defect in the ornithine transporter I. These findings indicate disturbances in nitrogen metabolism, most probably at the level of glutamine metabolism in primary hyperammonemia diseases. Urinary KGM levels, however, were not well correlated with secondary hyperammonemia in patients with propionic acidemia or methylmalonic acidemia, possibly as a result, in part, of decreased glutamine levels. In conclusion, the GC/MS procedure has the required lower limit of quantification for analysis of urinary KGM, which is markedly increased in urea cycle disorders and other primary hyperammonemic diseases.


Subject(s)
Hydroxyproline/urine , Ketoglutaric Acids/metabolism , Lactams/metabolism , Urea Cycle Disorders, Inborn/urine , Adult , Ammonia/blood , Child , Child, Preschool , Gas Chromatography-Mass Spectrometry , Humans , Infant , Infant, Newborn
18.
Rapid Commun Mass Spectrom ; 23(19): 3167-72, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19718778

ABSTRACT

Nutrition and drugs are main environmental factors that affect metabolism. We performed metabolomics of urine from an 8-year-old patient (case 1) with epilepsy and an 11-year-old patient (case 2) with malignant lymphoma who was being treated with methotrexate. Both patients were receiving total parenteral nutrition (TPN). We used our diagnostic procedure consisting of urease pretreatment, partial adoption of stable isotope dilution, gas chromatography/mass spectrometry (GC/MS) measurement and target analysis for 200 analytes including organic acids and amino acids. Surprisingly, their metabolic profiles were identical to that of phenylketonuria. The neopterin level was markedly above normal in case 1, and both neopterin and biopterin were significantly above normal in case 2. Mutation analysis of genomic DNA from case 1 showed neither homozygosity nor heterozygosity for phenylalanine hydroxylase deficiency. The metabolic profiles of both cases were normal when they were not receiving TPN. TPN is presently prohibited for individuals who have inherited disorders that affect amino acid metabolism. Although the Phe content of the TPN was not the sole cause of the PKU profile, its effect, combined with other factors, e.g. specific medication or possibly underlying diseases, led to this metabolic abnormality. The present study suggests that GC/MS-based metabolomics by target analysis could be important for assuring the safety of the treatments for patients receiving both TPN and methotrexate. Metabolomic profiling, both before and during TPN, is useful for determining the optimal nutritional formula not only for neonates, but also for young children who are known heterozygotes for metabolic disorders or whose status is unknown.


Subject(s)
Metabolome , Methotrexate/adverse effects , Parenteral Nutrition, Total/adverse effects , Phenylketonurias/etiology , Phenylketonurias/metabolism , Urine/chemistry , Child , Child, Preschool , Humans , Male , Methotrexate/therapeutic use , Phenylketonurias/urine
SELECTION OF CITATIONS
SEARCH DETAIL
...