Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
J Vasc Res ; 58(3): 172-179, 2021.
Article in English | MEDLINE | ID: mdl-33780963

ABSTRACT

Computational fluid dynamics were used to assess hemodynamic changes in an actively rupturing abdominal aortic aneurysm (AAA) over a 9-day period. Active migration of contrast from the lumen into the thickest region of intraluminal thrombus (ILT) was demonstrated until it ultimately breached the adventitial layer. Four days after symptom onset, there was a discrete disruption of adventitial calcium with bleb formation at the site of future rupture. Rupture occurred in a region of low wall shear stress and was associated with a marked increase in AAA diameter from 6.6 to 8.4 cm. The cross-sectional area of the flow lumen increased across all time points from 6.28 to 12.08 cm2. The increase in luminal area preceded the increase in AAA diameter and was characterized by an overall deceleration in recirculation flow velocity with a coinciding increase in flow velocity penetrating the ILT. We show that there are significant hemodynamic and structural changes in the AAA flow lumen in advance of any appreciable increase in aortic diameter or rupture. The significant increase in AAA diameter with rupture suggests that AAA may actually rupture at smaller sizes than those measured on day of rupture. These findings have implications for algorithms the predict AAA rupture risk.


Subject(s)
Aorta, Abdominal/physiopathology , Aortic Aneurysm, Abdominal/physiopathology , Aortic Rupture/physiopathology , Hemodynamics , Models, Cardiovascular , Patient-Specific Modeling , Aged , Aorta, Abdominal/diagnostic imaging , Aortic Aneurysm, Abdominal/diagnostic imaging , Aortic Rupture/diagnostic imaging , Aortography , Computed Tomography Angiography , Humans , Hydrodynamics , Male , Regional Blood Flow , Stress, Mechanical , Time Factors
2.
JVS Vasc Sci ; 1: 190-199, 2020.
Article in English | MEDLINE | ID: mdl-34617048

ABSTRACT

OBJECTIVE: We have previously demonstrated that human abdominal aortic aneurysm (AAA) rupture occurs in zones of low wall shear stress where flow recirculation and intraluminal thrombus (ILT) deposition are increased. Matrix metalloproteinase-9 (MMP-9) is involved in the pathogenesis of AAA via its lytic effect on collagen and elastin. We hypothesize that flow-mediated ILT deposition promotes increased local inflammatory and MMP-9 activity that leads to AAA wall degeneration. The purpose of this study was to examine the correlation between predicted pulsatile flow dynamics and regional differences in MMP-9, elastin, collagen, and ILT deposition in human AAA. METHODS: Full-thickness aortic tissue samples were collected from 24 patients undergoing open AAA repair. Control infrarenal aortic tissue was obtained from 6 patients undergoing aortobifemoral bypass. Full-thickness aortic tissue and ILT were assessed for MMP-9 levels using a cytokine array assay. Histologic and immunohistochemical assessment of inflammation, collagen and elastin content, and MMP-9 levels were also measured. Three-dimensional AAA geometry was generated from computed tomography angiogram (CTA) images using Mimics software and computational fluid dynamics was used to predict pulsatile aortic blood flow. RESULTS: The majority of AAA showed eccentric ILT deposition which was correlated with predicted recirculation blood flow (R2 = -0.17; P < .05). The regions of high ILT were associated with significant increases in inflammation and loss of elastin and collagen compared with regions of low ILT, or with control tissue. MMP-9 was significantly higher in areas of high ILT deposition compared with areas devoid of ILT. Tissue MMP-9 was correlated with the thickness of ILT deposition (R2 = 0.46; P < .05), and was also present in high levels in thick compared with thin ILT. CONCLUSIONS: We have shown a correlation between flow-mediated ILT deposition with increased tissue levels of MMP-9 activity, increased inflammatory infiltrate, and decreased elastin and collagen content in stereotactically sampled human AAA, suggesting that ILT deposition is associated with local increases in proteolytic activity that may preferentially weaken and promote rupture at selected regions.

3.
Cardiovasc Eng Technol ; 8(1): 57-69, 2017 03.
Article in English | MEDLINE | ID: mdl-27896659

ABSTRACT

Direct numerical simulations were performed on four patient-specific abdominal aortic aneurysm (AAA) geometries and the resulting pulsatile blood flow dynamics were compared to aneurysm shape and correlated with intraluminal thrombus (ILT) deposition. For three of the cases, turbulent vortex structures impinged/sheared along the anterior wall and along the posterior wall a zone of recirculating blood formed. Within the impingement region the AAA wall was devoid of ILT and remote to this region there was an accumulation of ILT. The high wall shear stress (WSS) caused by the impact of vortexes is thought to prevent the attachment of ILT. WSS from impingement is comparable to peak-systolic WSS in a normal-sized aorta and therefore may not damage the wall. Expansion occurred to a greater extent in the direction of jet impingement and the wall-normal force from the continuous impact of vortexes may contribute to expansion. It was shown that the impingement region has low oscillatory shear index (OSI) and recirculation zones can have either low or high OSI. No correlation could be identified between OSI and ILT deposition since different flow dynamics can have similar OSI values.


Subject(s)
Aortic Aneurysm, Abdominal/physiopathology , Models, Cardiovascular , Pulsatile Flow , Thrombosis/physiopathology , Aorta, Abdominal/physiopathology , Blood Flow Velocity , Computer Simulation , Hemodynamics , Humans , Stress, Mechanical
4.
J Vasc Surg ; 63(6): 1613-9, 2016 06.
Article in English | MEDLINE | ID: mdl-25752691

ABSTRACT

OBJECTIVE: Aortic diameter as the primary criterion in the decision to repair abdominal aortic aneurysms (AAAs) has drawbacks as some rupture below size thresholds, whereas others reach extreme size without rupture. Predictions of static aortic wall stress have also failed to reliably predict rupture potential. The objective of this study was to computationally assess blood flow characteristics at the site of infrarenal AAA rupture. On the basis of the finite element literature correlating rupture location with high static local wall stress, we hypothesized that a computational fluid dynamics approach would also demonstrate rupture at regions of high pressure and wall shear stress (WSS). METHODS: Three-dimensional AAA geometry was generated from computed tomography angiography images of seven ruptured AAAs. Aortic blood flow velocity, pressure, and WSS were computationally determined. Flow characteristics at the site of rupture were determined and compared across all cases. RESULTS: AAA size at the time of rupture was 8.3 ± 0.9 cm. Only three of the seven AAAs ruptured at the site of maximal diameter. Blood flow velocity in the aneurysmal aorta showed dominant flow channels with zones of recirculation, where low WSS predominated. Regardless of aneurysm size or configuration, rupture occurred in or near these flow recirculation zones in all cases. WSS was significantly lower and thrombus deposition was more abundant at the site of rupture. CONCLUSIONS: This computational study was the first to assess blood flow characteristics at the site of infrarenal AAA rupture in realistic aortic geometries. In contradiction to our initial hypothesis, rupture occurred not at sites of high pressure and WSS but rather at regions of predicted flow recirculation, where low WSS and thrombus deposition predominated. These findings raise the possibility that this flow pattern may lead to thrombus deposition, which may elaborate adventitial degeneration and eventual AAA rupture.


Subject(s)
Aorta, Abdominal/physiopathology , Aortic Aneurysm, Abdominal/complications , Aortic Rupture/etiology , Hemodynamics , Aorta, Abdominal/diagnostic imaging , Aortic Aneurysm, Abdominal/diagnostic imaging , Aortic Aneurysm, Abdominal/physiopathology , Aortic Rupture/diagnostic imaging , Aortic Rupture/physiopathology , Aortography/methods , Arterial Pressure , Blood Flow Velocity , Computed Tomography Angiography , Disease Progression , Female , Finite Element Analysis , Humans , Imaging, Three-Dimensional , Male , Models, Cardiovascular , Patient-Specific Modeling , Radiographic Image Interpretation, Computer-Assisted , Regional Blood Flow , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL