Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 176
Filter
1.
Mycotoxin Res ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38743341

ABSTRACT

Ochratoxin A (OTA) is known to be strongly bound to serum albumin, but it remains unknown how albumin affects its metabolism and kinetics. To close this gap, we used a mouse model, where heterozygous albumin deletion reduces serum albumin to concentrations similar to hypoalbuminemic patients and completely eliminates albumin by a homozygous knockout. OTA and its potential metabolites (OTα, 4-OH-OTA, 7'-OH-OTA, OTHQ, OP-OTA, OTB-GSH, OTB-NAC, OTB) were time-dependently analyzed in plasma, bile, and urine by LC-MS/MS and were compared to previously published hepatotoxicity and nephrotoxicity data. Homozygous albumin deletion strongly accelerated plasma clearance as well as biliary and urinary excretion of the parent compound and its hydroxylation products. Decreasing albumin in mice by the heterozygous and even more by the homozygous knockout leads to an increase in the parent compound in urine which corresponded to increased nephrotoxicity. The role of albumin in OTA-induced hepatotoxicity is more complex, since heterozygous but not homozygous nor wild-type mice showed a strong biliary increase in the toxic open lactone OP-OTA. Correspondingly, OTA-induced hepatotoxicity was higher in heterozygous than in wild-type and homozygous animals. We present evidence that albumin-mediated retention of OTA in hepatocytes is required for formation of the toxic OP-OTA, while complete albumin elimination leads to rapid biliary clearance of OTA from hepatocytes with less formation of OP-OTA. In conclusion, albumin has a strong influence on metabolism and toxicity of OTA. In hypoalbuminemia, the parent OTA is associated with increased nephrotoxicity and the open lactone with increased hepatotoxicity.

2.
Br J Haematol ; 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710595

ABSTRACT

The treatment of acute myeloid leukaemia (AML) has changed fundamentally in the last decade with many new targeted therapies entering clinics. Some of the most interesting agents under development are Menin inhibitors which interfere with the interaction of Menin with wild-type (wt) KMT2A or a KMT2A-fusion protein and thereby downregulate the leukaemic gene expression (MEIS1, PBX3, HOX) in NPM1 mutant or KMT2A-rearranged leukaemia. Other HOX and MEIS1 expressing leukaemias may also be sensitive to Menin inhibition. Following the encouraging results as monotherapy in refractory and relapsed AML, the combination of Menin inhibitors with chemotherapeutic agents and other targeted drugs is being investigated clinically.

3.
Mitochondrion ; : 101889, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38692382

ABSTRACT

Iron is a trace element that is critical for most living organisms and plays a key role in a wide variety of metabolic processes. In the mitochondrion, iron is involved in producing iron-sulfur clusters and synthesis of heme and kept within physiological ranges by concerted activity of multiple molecules. Mitochondrial iron uptake is mediated by the solute carrier transporters Mitoferrin-1 (SLC25A37) and Mitoferrin-2 (SLC25A28). While Mitoferrin-1 is mainly involved in erythropoiesis, the cellular function of the ubiquitously expressed Mitoferrin-2 remains less well defined. Furthermore, Mitoferrin-2 is associated with several human diseases, including cancer, cardiovascular and metabolic diseases, hence representing a potential therapeutic target. Here, we developed a robust approach to quantify mitochondrial iron uptake mediated by Mitoferrin-2 in living cells. We utilize HEK293 cells with inducible expression of Mitoferrin-2 and measure iron-induced quenching of rhodamine B[(1,10-phenanthroline-5-yl)-aminocarbonyl]benzyl ester (RPA) fluorescence and validate this assay for medium-throughput screening. This assay may allow identification and characterization of Mitoferrin-2 modulators and could enable drug discovery for this target.

4.
J Hepatol ; 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38552880

ABSTRACT

The rising prevalence of liver diseases related to obesity and excessive use of alcohol is fuelling an increasing demand for accurate biomarkers aimed at community screening, diagnosis of steatohepatitis and significant fibrosis, monitoring, prognostication and prediction of treatment efficacy. Breakthroughs in omics methodologies and the power of bioinformatics have created an excellent opportunity to apply technological advances to clinical needs, for instance in the development of precision biomarkers for personalised medicine. Via omics technologies, biological processes from the genes to circulating protein, as well as the microbiome - including bacteria, viruses and fungi, can be investigated on an axis. However, there are important barriers to omics-based biomarker discovery and validation, including the use of semi-quantitative measurements from untargeted platforms, which may exhibit high analytical, inter- and intra-individual variance. Standardising methods and the need to validate them across diverse populations presents a challenge, partly due to disease complexity and the dynamic nature of biomarker expression at different disease stages. Lack of validity causes lost opportunities when studies fail to provide the knowledge needed for regulatory approvals, all of which contributes to a delayed translation of these discoveries into clinical practice. While no omics-based biomarkers have matured to clinical implementation, the extent of data generated has enabled the hypothesis-free discovery of a plethora of candidate biomarkers that warrant further validation. To explore the many opportunities of omics technologies, hepatologists need detailed knowledge of commonalities and differences between the various omics layers, and both the barriers to and advantages of these approaches.

5.
Aliment Pharmacol Ther ; 59(7): 877-888, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38414095

ABSTRACT

BACKGROUND: Patients with cirrhosis are susceptible to develop bacterial infections that trigger acute decompensation (AD) and acute-on-chronic liver failure (ACLF). Infections with multidrug-resistant organisms (MDRO) are associated with deleterious outcome. MDRO colonisation frequently proceeds MDRO infections and antibiotic therapy has been associated with MDRO colonisation. AIM: The aim of the study was to assess the influence of non-antibiotic medication contributing to MDRO colonisation. METHODS: Three hundred twenty-four patients with AD and ACLF admitted to the ICU of Frankfurt University Hospital with MDRO screening were included. Regression models were performed to identify drugs associated with MDRO colonisation. Another cohort (n = 129) from Barcelona was included to validate. A third multi-centre cohort (n = 203) with metagenomic sequencing data of stool was included to detect antibiotic resistance genes. RESULTS: A total of 97 patients (30%) were identified to have MDRO colonisation and 35 of them (11%) developed MDRO infection. Patients with MDRO colonisation had significantly higher risk of MDRO infection than those without (p = 0.0098). Apart from antibiotic therapy (odds ratio (OR) 2.91, 95%-confidence interval (CI) 1.82-4.93, p < 0.0001), terlipressin therapy in the previous 14 days was the only independent covariate associated with MDRO colonisation in both cohorts, the overall (OR 9.47, 95%-CI 2.96-30.23, p < 0.0001) and after propensity score matching (OR 5.30, 95%-CI 1.22-23.03, p = 0.011). In the second cohort, prior terlipressin therapy was a risk factor for MDRO colonisation (OR 2.49, 95% CI 0.911-6.823, p = 0.075) and associated with risk of MDRO infection during follow-up (p = 0.017). The validation cohort demonstrated that antibiotic inactivation genes were significantly associated with terlipressin administration (p = 0.001). CONCLUSIONS: Our study reports an increased risk of MDRO colonisation in patients with AD or ACLF, who recently received terlipressin therapy, while other commonly prescribed non-antibiotic co-medications had negligible influence. Future prospective trials are needed to confirm these results.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Multiple, Bacterial , Humans , Terlipressin/adverse effects , Drug Resistance, Multiple, Bacterial/genetics , Anti-Bacterial Agents/adverse effects , Risk Factors , Liver Cirrhosis/drug therapy , Bacteria
6.
Nat Protoc ; 19(3): 668-699, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38092943

ABSTRACT

The human gut microbiome is a key contributor to health, and its perturbations are linked to many diseases. Small-molecule xenobiotics such as drugs, chemical pollutants and food additives can alter the microbiota composition and are now recognized as one of the main factors underlying microbiome diversity. Mapping the effects of such compounds on the gut microbiome is challenging because of the complexity of the community, anaerobic growth requirements of individual species and the large number of interactions that need to be quantitatively assessed. High-throughput screening setups offer a promising solution for probing the direct inhibitory effects of hundreds of xenobiotics on tens of anaerobic gut bacteria. When automated, such assays enable the cost-effective investigation of a wide range of compound-microbe combinations. We have developed an experimental setup and protocol that enables testing of up to 5,000 compounds on a target gut species under strict anaerobic conditions within 5 d. In addition, with minor modifications to the protocol, drug effects can be tested on microbial communities either assembled from isolates or obtained from stool samples. Experience in working in an anaerobic chamber, especially in performing delicate work with thick chamber gloves, is required for implementing this protocol. We anticipate that this protocol will accelerate the study of interactions between small molecules and the gut microbiome and provide a deeper understanding of this microbial ecosystem, which is intimately intertwined with human health.


Subject(s)
Ecosystem , High-Throughput Screening Assays , Humans , Anaerobiosis , Bacteria , Bacteria, Anaerobic
7.
Nucleic Acids Res ; 52(D1): D777-D783, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37897342

ABSTRACT

Meta'omic data on microbial diversity and function accrue exponentially in public repositories, but derived information is often siloed according to data type, study or sampled microbial environment. Here we present SPIRE, a Searchable Planetary-scale mIcrobiome REsource that integrates various consistently processed metagenome-derived microbial data modalities across habitats, geography and phylogeny. SPIRE encompasses 99 146 metagenomic samples from 739 studies covering a wide array of microbial environments and augmented with manually-curated contextual data. Across a total metagenomic assembly of 16 Tbp, SPIRE comprises 35 billion predicted protein sequences and 1.16 million newly constructed metagenome-assembled genomes (MAGs) of medium or high quality. Beyond mapping to the high-quality genome reference provided by proGenomes3 (http://progenomes.embl.de), these novel MAGs form 92 134 novel species-level clusters, the majority of which are unclassified at species level using current tools. SPIRE enables taxonomic profiling of these species clusters via an updated, custom mOTUs database (https://motu-tool.org/) and includes several layers of functional annotation, as well as crosslinks to several (micro-)biological databases. The resource is accessible, searchable and browsable via http://spire.embl.de.


Subject(s)
Databases, Factual , Metagenome , Microbiota , Metagenomics , Microbiota/genetics
8.
Mol Cancer ; 22(1): 196, 2023 12 04.
Article in English | MEDLINE | ID: mdl-38049829

ABSTRACT

Pharmacologic targeting of chromatin-associated protein complexes has shown significant responses in KMT2A-rearranged (KMT2A-r) acute myeloid leukemia (AML) but resistance frequently develops to single agents. This points to a need for therapeutic combinations that target multiple mechanisms. To enhance our understanding of functional dependencies in KMT2A-r AML, we have used a proteomic approach to identify the catalytic immunoproteasome subunit PSMB8 as a specific vulnerability. Genetic and pharmacologic inactivation of PSMB8 results in impaired proliferation of murine and human leukemic cells while normal hematopoietic cells remain unaffected. Disruption of immunoproteasome function drives an increase in transcription factor BASP1 which in turn represses KMT2A-fusion protein target genes. Pharmacologic targeting of PSMB8 improves efficacy of Menin-inhibitors, synergistically reduces leukemia in human xenografts and shows preserved activity against Menin-inhibitor resistance mutations. This identifies and validates a cell-intrinsic mechanism whereby selective disruption of proteostasis results in altered transcription factor abundance and repression of oncogene-specific transcriptional networks. These data demonstrate that the immunoproteasome is a relevant therapeutic target in AML and that targeting the immunoproteasome in combination with Menin-inhibition could be a novel approach for treatment of KMT2A-r AML.


Subject(s)
Leukemia, Myeloid, Acute , Proteomics , Humans , Mice , Animals , Myeloid-Lymphoid Leukemia Protein/genetics , Myeloid-Lymphoid Leukemia Protein/metabolism , Leukemia, Myeloid, Acute/metabolism , Transcription Factors/genetics , Mutation , Gene Expression
9.
Front Immunol ; 14: 1269012, 2023.
Article in English | MEDLINE | ID: mdl-37809078

ABSTRACT

AML is a malignant disease of hematopoietic progenitor cells with unsatisfactory treatment outcome, especially in patients that are ineligible for intensive chemotherapy. Immunotherapy, comprising checkpoint inhibition, T-cell engaging antibody constructs, and cellular therapies, has dramatically improved the outcome of patients with solid tumors and lymphatic neoplasms. In AML, these approaches have been far less successful. Discussed reasons are the relatively low mutational burden of AML blasts and the difficulty in defining AML-specific antigens not expressed on hematopoietic progenitor cells. On the other hand, epigenetic dysregulation is an essential driver of leukemogenesis, and non-selective hypomethylating agents (HMAs) are the current backbone of non-intensive treatment. The first clinical trials that evaluated whether HMAs may improve immune checkpoint inhibitors' efficacy showed modest efficacy except for the anti-CD47 antibody that was substantially more efficient against AML when combined with azacitidine. Combining bispecific antibodies or cellular treatments with HMAs is subject to ongoing clinical investigation, and efficacy data are awaited shortly. More selective second-generation inhibitors targeting specific chromatin regulators have demonstrated promising preclinical activity against AML and are currently evaluated in clinical trials. These drugs that commonly cause leukemia cell differentiation potentially sensitize AML to immune-based treatments by co-regulating immune checkpoints, providing a pro-inflammatory environment, and inducing (neo)-antigen expression. Combining selective targeted epigenetic drugs with (cellular) immunotherapy is, therefore, a promising approach to avoid unintended effects and augment efficacy. Future studies will provide detailed information on how these compounds influence specific immune functions that may enable translation into clinical assessment.


Subject(s)
Leukemia, Myeloid, Acute , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Immunotherapy , Azacitidine/therapeutic use , Treatment Outcome , Epigenesis, Genetic
10.
bioRxiv ; 2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37693522

ABSTRACT

Novel antibiotics are urgently needed to combat the antibiotic-resistance crisis. We present a machine learning-based approach to predict prokaryotic antimicrobial peptides (AMPs) by leveraging a vast dataset of 63,410 metagenomes and 87,920 microbial genomes. This led to the creation of AMPSphere, a comprehensive catalog comprising 863,498 non-redundant peptides, the majority of which were previously unknown. We observed that AMP production varies by habitat, with animal-associated samples displaying the highest proportion of AMPs compared to other habitats. Furthermore, within different human-associated microbiota, strain-level differences were evident. To validate our predictions, we synthesized and experimentally tested 50 AMPs, demonstrating their efficacy against clinically relevant drug-resistant pathogens both in vitro and in vivo. These AMPs exhibited antibacterial activity by targeting the bacterial membrane. Additionally, AMPSphere provides valuable insights into the evolutionary origins of peptides. In conclusion, our approach identified AMP sequences within prokaryotic microbiomes, opening up new avenues for the discovery of antibiotics.

11.
Vet Microbiol ; 284: 109840, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37531840

ABSTRACT

Multidrug-resistant bacteria infect companion animals and livestock in addition to their devastating impact on human health. Novel Bacterial Topoisomerase Inhibitors (NBTIs) with excellent activity against Gram-positive bacteria have previously been identified as promising new antibacterial agents. Herein, we evaluate the antibacterial activity of these NBTIs against a variety of important veterinary pathogens and demonstrate outstanding in vitro activity, especially against staphylococci.


Subject(s)
Bacteria , Topoisomerase Inhibitors , Animals , Humans , Topoisomerase Inhibitors/pharmacology , Structure-Activity Relationship , Anti-Bacterial Agents/pharmacology , Gram-Positive Bacteria , Microbial Sensitivity Tests/veterinary
12.
J Chem Phys ; 159(4)2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37522404

ABSTRACT

In this work, we test a recently developed method to enhance classical auxiliary-field quantum Monte Carlo (AFQMC) calculations with quantum computers against examples from chemistry and material science, representative of classes of industry-relevant systems. As molecular test cases, we calculate the energy curve of H4 and the relative energies of ozone and singlet molecular oxygen with respect to triplet molecular oxygen, which is industrially relevant in organic oxidation reactions. We find that trial wave functions beyond single Slater determinants improve the performance of AFQMC and allow it to generate energies close to chemical accuracy compared to full configuration interaction or experimental results. In the field of material science, we study the electronic structure properties of cuprates through the quasi-1D Fermi-Hubbard model derived from CuBr2, where we find that trial wave functions with both significantly larger fidelities and lower energies over a mean-field solution do not necessarily lead to AFQMC results closer to the exact ground state energy.

13.
Mol Syst Biol ; 19(9): e11525, 2023 09 12.
Article in English | MEDLINE | ID: mdl-37485738

ABSTRACT

Multi-omics analyses are used in microbiome studies to understand molecular changes in microbial communities exposed to different conditions. However, it is not always clear how much each omics data type contributes to our understanding and whether they are concordant with each other. Here, we map the molecular response of a synthetic community of 32 human gut bacteria to three non-antibiotic drugs by using five omics layers (16S rRNA gene profiling, metagenomics, metatranscriptomics, metaproteomics and metabolomics). We find that all the omics methods with species resolution are highly consistent in estimating relative species abundances. Furthermore, different omics methods complement each other for capturing functional changes. For example, while nearly all the omics data types captured that the antipsychotic drug chlorpromazine selectively inhibits Bacteroidota representatives in the community, the metatranscriptome and metaproteome suggested that the drug induces stress responses related to protein quality control. Metabolomics revealed a decrease in oligosaccharide uptake, likely caused by Bacteroidota depletion. Our study highlights how multi-omics datasets can be utilized to reveal complex molecular responses to external perturbations in microbial communities.


Subject(s)
Microbiota , Multiomics , Humans , RNA, Ribosomal, 16S/genetics , Microbiota/genetics , Metabolomics/methods , Bacteria/genetics , Metagenomics/methods
14.
Lancet Glob Health ; 11(8): e1183-e1193, 2023 08.
Article in English | MEDLINE | ID: mdl-37474226

ABSTRACT

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is the third leading cause of death worldwide and imposes a substantial economic burden. Gaining a thorough understanding of the economic implications of COPD is an important prerequisite for sound, evidence-based policy making. We aimed to estimate the macroeconomic burden of COPD for each country and establish its distribution across world regions. METHODS: In this health-augmented macroeconomic modelling study we estimated the macroeconomic burden of COPD for 204 countries and territories over the period 2020-50. The model accounted for (1) the effect of COPD mortality and morbidity on labour supply, (2) age and sex specific differences in education and work experience among those affected by COPD, and (3) the impact of COPD treatment costs on physical capital accumulation. We obtained data from various public sources including the Global Burden of Disease Study 2019, the World Bank database, and the literature. The macroeconomic burden of COPD was assessed by comparing gross domestic product (GDP) between a scenario projecting disease prevalence based on current estimates and a counterfactual scenario with zero COPD prevalence from 2020 to 2050. FINDINGS: Our findings suggest that COPD will cost the world economy INT$4·326 trillion (uncertainty interval 3·327-5·516; at constant 2017 prices) in 2020-50. This economic effect is equivalent to a yearly tax of 0·111% (0·085-0·141) on global GDP. China and the USA face the largest economic burdens from COPD, accounting for INT$1·363 trillion (uncertainty interval 1·034-1·801) and INT$1·037 trillion (0·868-1·175), respectively. INTERPRETATION: The macroeconomic burden of COPD is large and unequally distributed across countries, world regions, and income levels. Our study stresses the urgent need to invest in global efforts to curb the health and economic burdens of COPD. Investments in effective interventions against COPD do not represent a burden but could instead provide substantial economic returns in the foreseeable future. FUNDING: Alexander von Humboldt Foundation, National Natural Science Foundation of China, CAMS Innovation Fund for Medical Science, Chinese Academy of Engineering project, Chinese Academy of Medical Sciences and Peking Union Medical College project, and Horizon Europe. TRANSLATIONS: For the Chinese and German translations of the abstract see Supplementary Materials section.


Subject(s)
Financial Stress , Pulmonary Disease, Chronic Obstructive , Male , Female , Humans , Cost of Illness , Gross Domestic Product , China , Global Health
15.
Lancet Haematol ; 10(7): e495-e509, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37187198

ABSTRACT

BACKGROUND: Acute myeloid leukaemia with mutated NPM1 is associated with high CD33 expression and intermediate-risk cytogenetics. The aim of this study was to evaluate intensive chemotherapy with or without the anti-CD33 antibody-drug conjugate gemtuzumab ozogamicin in participants with newly diagnosed, NPM1-mutated acute myeloid leukaemia. METHODS: This open-label, phase 3 trial was conducted at 56 hospitals in Germany and Austria. Eligible participants were 18 years or older and had newly diagnosed NPM1-mutated acute myeloid leukaemia and an Eastern Cooperative Oncology Group performance status of 0-2. Participants were randomly assigned, using age as a stratification factor (18-60 years vs >60 years), 1:1 to the two treatment groups using allocation concealment; there was no masking of participants and investigators to treatment groups. Participants received two cycles of induction therapy (idarubicin, cytarabine, and etoposide) plus all-trans retinoic acid (ATRA) followed by three consolidation cycles of high-dose cytarabine (or an intermediate dose for those older than 60 years) and ATRA, without or with gemtuzumab ozogamicin (3 mg/m2 administered intravenously on day 1 of induction cycles 1 and 2, and consolidation cycle 1). The primary endpoints were short-term event-free survival and overall survival in the intention-to-treat population (overall survival was added as a co-primary endpoint after amendment four of the protocol on Oct 13, 2013). The secondary endpoints were event-free survival with long-term follow-up, rates of complete remission, complete remission with partial haematological recovery (CRh), and complete remission with incomplete haematological recovery (CRi), cumulative incidences of relapse and death, and number of days in hospital. This trial is registered with ClinicalTrials.gov (NCT00893399) and has been completed. FINDINGS: Between May 12, 2010, and Sept 1, 2017, 600 participants were enrolled, of which 588 (315 women and 273 men) were randomly assigned (296 to the standard group and 292 to the gemtuzumab ozogamicin group). No difference was found in short-term event-free survival (short-term event-free survival at 6-month follow-up, 53% [95% CI 47-59] in the standard group and 58% [53-64] in the gemtuzumab ozogamicin group; hazard ratio [HR] 0·83; 95% CI 0·65-1·04; p=0·10) and overall survival between treatment groups (2-year overall survival, 69% [63-74] in the standard group and 73% [68-78] in the gemtuzumab ozogamicin group; 0·90; 0·70-1·16; p=0·43). There was no difference in complete remission or CRi rates (n=267 [90%] in the standard group vs n=251 [86%] in the gemtuzumab ozogamicin group; odds ratio [OR] 0·67; 95% CI 0·40-1·11; p=0·15) and complete remission or CRh rates (n=214 [72%] vs n=195 [67%]; OR 0·77; 0·54-1·10; p=0·18), whereas the complete remission rate was lower with gemtuzumab ozogamicin (n=172 [58%] vs n=136 [47%]; OR 0·63; 0·45-0·80; p=0·0068). Cumulative incidence of relapse was significantly reduced by gemtuzumab ozogamicin (2-year cumulative incidence of relapse, 37% [95% CI 31-43] in the standard group and 25% [20-30] in the gemtuzumab ozogamicin group; cause-specific HR 0·65; 0·49-0·86; p=0·0028), and there was no difference in the cumulative incidence of death (2-year cumulative incidence of death 6% [4-10] in the standard group and 7% [5-11] in the gemtuzumab ozogamicin group; HR 1·03; 0·59-1·81; p=0·91). There were no differences in the number of days in hospital across all cycles between treatment groups. The most common treatment-related grade 3-4 adverse events were febrile neutropenia (n=135 [47%] in the gemtuzumab ozogamicin group vs n=122 [41%] in the standard group), thrombocytopenia (n=261 [90%] vs n=265 [90%]), pneumonia (n=71 [25%] vs n=64 [22%]), sepsis (n=85 [29%] vs n=73 [25%]). Treatment-related deaths were documented in 25 participants (4%; n=8 [3%] in the standard group and n=17 [6%] in the gemtuzumab ozogamicin group), mostly due to sepsis and infections. INTERPRETATION: The primary endpoints of the trial of event-free survival and overall survival were not met. However, an anti-leukaemic efficacy of gemtuzumab ozogamicin in participants with NPM1-mutated acute myeloid leukaemia is shown by a significantly lower cumulative incidence of relapse rate, suggesting that the addition of gemtuzumab ozogamicin might reduce the need for salvage therapy in these participants. The results from this study provide further evidence that gemtuzumab ozogamicin should be added in the standard of care treatment in adults with NPM1-mutated acute myeloid leukaemia. FUNDING: Pfizer and Amgen.


Subject(s)
Leukemia, Myeloid, Acute , Neoplasm Recurrence, Local , Adolescent , Adult , Female , Humans , Male , Middle Aged , Young Adult , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Cytarabine/therapeutic use , Gemtuzumab/therapeutic use , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/diagnosis , Neoplasm Recurrence, Local/drug therapy , Nuclear Proteins/genetics , Treatment Outcome , Tretinoin/therapeutic use
17.
JAMA Oncol ; 9(4): 465-472, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36821107

ABSTRACT

Importance: Cancers are a leading cause of mortality, accounting for nearly 10 million annual deaths worldwide, or 1 in 6 deaths. Cancers also negatively affect countries' economic growth. However, the global economic cost of cancers and its worldwide distribution have yet to be studied. Objective: To estimate and project the economic cost of 29 cancers in 204 countries and territories. Design, Setting, and Participants: A decision analytical model that incorporates economic feedback in assessing health outcomes associated with the labor force and investment. A macroeconomic model was used to account for (1) the association of cancer-related mortality and morbidity with labor supply; (2) age-sex-specific differences in education, experience, and labor market participation of those who are affected by cancers; and (3) the diversion of cancer treatment expenses from savings and investments. Data were collected on April 25, 2022. Main Outcomes and Measures: Economic cost of 29 cancers across countries and territories. Costs are presented in international dollars at constant 2017 prices. Results: The estimated global economic cost of cancers from 2020 to 2050 is $25.2 trillion in international dollars (at constant 2017 prices), equivalent to an annual tax of 0.55% on global gross domestic product. The 5 cancers with the highest economic costs are tracheal, bronchus, and lung cancer (15.4%); colon and rectum cancer (10.9%); breast cancer (7.7%); liver cancer (6.5%); and leukemia (6.3%). China and the US face the largest economic costs of cancers in absolute terms, accounting for 24.1% and 20.8% of the total global burden, respectively. Although 75.1% of cancer deaths occur in low- and middle-income countries, their share of the economic cost of cancers is lower at 49.5%. The relative contribution of treatment costs to the total economic cost of cancers is greater in high-income countries than in low-income countries. Conclusions and Relevance: In this decision analytical modeling study, the macroeconomic cost of cancers was found to be substantial and distributed heterogeneously across cancer types, countries, and world regions. The findings suggest that global efforts to curb the ongoing burden of cancers are warranted.


Subject(s)
Neoplasms , Male , Female , Humans , Morbidity , Neoplasms/epidemiology , Neoplasms/therapy , Educational Status , China
18.
Gastroenterology ; 164(7): 1248-1260, 2023 06.
Article in English | MEDLINE | ID: mdl-36849086

ABSTRACT

BACKGROUND & AIMS: Alcohol disturbs hepatic lipid synthesis and transport, but the role of lipid dysfunction in alcohol-related liver disease (ALD) is unclear. In this biopsy-controlled, prospective, observational study, we characterized the liver and plasma lipidomes in patients with early ALD. METHODS: We performed mass spectrometry-based lipidomics of paired liver and plasma samples from 315 patients with ALD and of plasma from 51 matched healthy controls. We associated lipid levels with histologic fibrosis, inflammation, and steatosis with correction for multiple testing and adjustment for confounders. We further investigated sphingolipid regulation by means of quantitative real-time polymerase chain reaction sequencing of microRNA, prediction of liver-related events, and tested causality with Mendelian randomization. RESULTS: We detected 198 lipids in the liver and 236 lipids in the circulation from 18 lipid classes. Most sphingolipids (sphingomyelins and ceramides) and phosphocholines were co-down-regulated in both liver and plasma, where lower abundance correlated with higher fibrosis stage. Sphingomyelins showed the most pronounced negative correlation to fibrosis, mirrored by negative correlations in both liver and plasma with hepatic inflammation. Reduced sphingomyelins predicted future liver-related events. This seemed to be characteristic of "pure ALD," as sphingomyelin levels were higher in patients with concomitant metabolic syndrome and ALD/nonalcoholic fatty liver disease overlap. Mendelian randomization in FinnGen and UK Biobanks indicated ALD as the cause of low sphingomyelins, and alcohol use disorder did not correlate with genetic susceptibility to low sphingomyelin levels. CONCLUSIONS: Alcohol-related liver fibrosis is characterized by selective and progressive lipid depletion in liver and blood, particularly sphingomyelins, which also associates with progression to liver-related events.


Subject(s)
Non-alcoholic Fatty Liver Disease , Sphingolipids , Humans , Sphingolipids/metabolism , Sphingomyelins/metabolism , Prospective Studies , Liver Cirrhosis/genetics , Liver Cirrhosis/metabolism , Liver/pathology , Ethanol/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Fibrosis , Inflammation/metabolism
19.
Anal Bioanal Chem ; 415(5): 913-933, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36683060

ABSTRACT

Oxylipins derived from the cyclooxygenase (COX) and lipoxygenase (LOX) pathways of the arachidonic acid (ARA) cascade are essential for the regulation of the inflammatory response and many other physiological functions. Comprehensive analytical methods comprised of oxylipin and protein abundance analysis are required to fully understand mechanisms leading to changes within these pathways. Here, we describe the development of a quantitative multi-omics approach combining liquid chromatography tandem mass spectrometry-based targeted oxylipin metabolomics and proteomics. As the first targeted proteomics method to cover these pathways, it enables the quantitative analysis of all human COX (COX-1 and COX-2) and relevant LOX pathway enzymes (5-LOX, 12-LOX, 15-LOX, 15-LOX-2, and FLAP) in parallel to the analysis of 239 oxylipins with our targeted oxylipin metabolomics method from a single sample. The detailed comparison between MRM3 and classical MRM-based detection in proteomics showed increased selectivity for MRM3, while MRM performed better in terms of sensitivity (LLOQ, 16-122 pM vs. 75-840 pM for the same peptides), linear range (up to 1.5-7.4 µM vs. 4-368 nM), and multiplexing capacities. Thus, the MRM mode was more favorable for this pathway analysis. With this sensitive multi-omics approach, we comprehensively characterized oxylipin and protein patterns in the human monocytic cell line THP-1 and differently polarized primary macrophages. Finally, the quantification of changes in protein and oxylipin levels induced by lipopolysaccharide stimulation and pharmaceutical treatment demonstrates its usefulness to study molecular modes of action involved in the modulation of the ARA cascade.


Subject(s)
Lipoxygenases , Oxylipins , Humans , Oxylipins/analysis , Arachidonic Acid , Proteomics , Cyclooxygenase 2
20.
J Health Econ ; 87: 102717, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36638641

ABSTRACT

We study the impact of health insurance expansion on medical spending, longevity and welfare in an OLG economy in which individuals purchase health care to lower mortality and medical progress is profit-driven. Three sectors are considered: final goods production; a health care sector, selling medical services to individuals; and an R&D sector, selling increasingly effective medical technology to the health care sector. We calibrate the model to the development of the US economy/health care system from 1965 to 2005 and study numerically the impact of the insurance expansion. We find that more extensive health insurance accounts for a large share of the rise in US health spending but also boosts the rate of medical progress. A welfare analysis shows that while the subsidization of health care through health insurance creates excessive health care spending, the gains in life expectancy brought about by induced medical progress more than compensate for this.


Subject(s)
Health Expenditures , Insurance, Health , Humans , Delivery of Health Care , Financing, Personal
SELECTION OF CITATIONS
SEARCH DETAIL
...