Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioresour Technol ; 364: 128088, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36216282

ABSTRACT

The ever-increasing quantity of greenhouse gases in the atmosphere can be attributed to the rapid increase in the world population as well as the expansion of globalization. Hence, achieving carbon neutrality by 2050 stands as a challenging task to accomplish. Global industrialization had necessitated the need to enhance the current production systems to reduce greenhouse gases emission, whilst promoting the capture of carbon dioxide from atmosphere. Hydrogen is often touted as the fuel of future via substituting fossil-based fuels. In this regard, renewable hydrogen happens to be a niche sector of novel technologies in achieving carbon neutrality. Microalgae-based biohydrogen technologies could be a sustainable and economical approach to produce hydrogen from a renewable source, while simultaneously promoting the absorption of carbon dioxide. This review highlights the current perspectives of biohydrogen production as an alternate source of energy. In addition, future challenges associated with biohydrogen production at large-scale application, storage and transportation are included. Key technologies in producing biohydrogen are finally described in building a carbon-neutral future.

2.
Environ Res ; 204(Pt B): 112113, 2022 03.
Article in English | MEDLINE | ID: mdl-34563528

ABSTRACT

Nanomodification of ultrafiltration (UF) membranes has been shown to be a simple and efficient technique for the preparation of high-performance membranes. In this work, an iron oxide functionalized halloysite nanoclay (Fe-HNC) nanocomposite was prepared and used as a nanofiller for polyethersulfone (PES) membranes. The effect of Fe-HNC concentration on the filtration performance of the membrane was investigated by varying the nanocomposite dosage (0-0.5 wt %) in the casting dope. Various characterization studies showed that the incorporation of Fe-HNC nanocomposites improved the membrane morphology and enhanced the surface properties, thermal stability, mechanical strength, hydrophilicity, and porosity. The permeability to pure water and filtration of humic acid (HA) were significantly improved by incorporating Fe-HNC into the PES membranes. The membrane with Fe-HNC loading of 0.1 wt % exhibited the highest pure water permeability (174.3 L/(m2 h bar)) and removal of HA (90.1 %), which were 1.8 times and 29 % higher, respectively than the pristine PES membrane. Moreover, fouling studies showed the enhanced antifouling ability of the Fe-HNC nanocomposites modified PES membranes, especially against irreversible fouling. Continuous membrane regeneration-based fouling removal studies from HA showed that the PES/0.1 wt % Fe-HNC membrane exhibited a high fouling recovery of 70.4 % with very low reversible and irreversible fouling resistance of 9.61 % and 14.78 %, respectively, compared to the pristine PES membrane (fouling recovery: 40.4 %; reversible fouling: 21.7 %; irreversible fouling: 20.1 %). Overall, the Fe-HNC nanocomposite proved to be an effective nanomodifier for improving the permeability of PES membranes and the antifouling ability to treat HA polluted aqueous streams.


Subject(s)
Humic Substances , Nanocomposites , Clay , Ferric Compounds , Humic Substances/analysis , Membranes, Artificial , Polymers , Sulfones
SELECTION OF CITATIONS
SEARCH DETAIL
...