Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 228
Filter
1.
Clin Microbiol Rev ; : e0006022, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38717124

ABSTRACT

SUMMARYGiven the importance of gut microbial homeostasis in maintaining health, there has been considerable interest in developing innovative therapeutic strategies for restoring gut microbiota. One such approach, fecal microbiota transplantation (FMT), is the main "whole gut microbiome replacement" strategy and has been integrated into clinical practice guidelines for treating recurrent Clostridioides difficile infection (rCDI). Furthermore, the potential application of FMT in other indications such as inflammatory bowel disease (IBD), metabolic syndrome, and solid tumor malignancies is an area of intense interest and active research. However, the complex and variable nature of FMT makes it challenging to address its precise functionality and to assess clinical efficacy and safety in different disease contexts. In this review, we outline clinical applications, efficacy, durability, and safety of FMT and provide a comprehensive assessment of its procedural and administration aspects. The clinical applications of FMT in children and cancer immunotherapy are also described. We focus on data from human studies in IBD in contrast with rCDI to delineate the putative mechanisms of this treatment in IBD as a model, including colonization resistance and functional restoration through bacterial engraftment, modulating effects of virome/phageome, gut metabolome and host interactions, and immunoregulatory actions of FMT. Furthermore, we comprehensively review omics technologies, metagenomic approaches, and bioinformatics pipelines to characterize complex microbial communities and discuss their limitations. FMT regulatory challenges, ethical considerations, and pharmacomicrobiomics are also highlighted to shed light on future development of tailored microbiome-based therapeutics.

2.
One Health ; 18: 100739, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38707933

ABSTRACT

Background: Clostridioides difficile is a leading cause of infectious diarrhea in both humans and livestock. In particular, C. difficile strains belonging to sequence type (ST) 11 are common enteropathogens. The aim of this study was to determine the presence and genetic relatedness of C. difficile types in dairy cattle and calves. Method: Dutch dairy farms were visited between February and December 2021. Feces was collected from adult dairy cattle and calves of two age categories (<4 weeks and 4 weeks-4 months). Fecal samples were also requested from dairy farmers, family members and employees. Fecal samples were cultured in an enrichment medium for 10-15 days and subcultured on solid media for capillary PCR ribotyping and whole genome sequencing. Results: C. difficile was detected on 31 out of 157 (19.8%) dairy farms. The highest prevalence was found in calves <4 weeks (17.5%). None of the 99 human samples collected were positive. Thirty-seven cultured isolates belonged to 11 different PCR ribotypes (RT) of which RT695 (56.8%) and RT078/126 (16.2%) were most abundant. In the database of the Netherlands National Expertise Centre for C. difficile infections (CDI, >10.000 patient isolates), RT695 was found in only two patients with hospital-onset CDI, diagnosed in 2020 and 2021. Sequence analysis of 21C. difficile RT695 from cattle revealed that all isolates belonged to clade 5, ST11 and contained genes encoding toxin A, toxin B and binary toxin. RT695 strains carried antimicrobial resistance genes typically found in clade 5C. difficile. Groups of genetically related RT695 isolates were found between dairy farms, whereas identical strains were only present in individual farms. Conclusions: C. difficile was found in ∼20% of dairy farms with a predominance of the relatively unknown RT695. Isolates of RT695 belonged to the same clade and sequence type as RT078/126, which is recognized as an important zoonotic type.

3.
Med Mycol ; 62(5)2024 May 03.
Article in English | MEDLINE | ID: mdl-38544330

ABSTRACT

The diagnostic performance of a prospective, systematic screening strategy for COVID-19 associated pulmonary aspergillosis (CAPA) during the COVID-19 pandemic was investigated. Patients with COVID-19 admitted to the ICU were screened for CAPA twice weekly by collection of tracheal aspirate (TA) for Aspergillus culture and PCR. Subsequently, bronchoalveolar lavage (BAL) sampling was performed in patients with positive screening results and clinical suspicion of infection. Patient data were collected from April 2020-February 2022. Patients were classified according to 2020 ECMM/ISHAM consensus criteria. In total, 126/370 (34%) patients were positive in screening and CAPA frequency was 52/370 (14%) (including 13 patients negative in screening). CAPA was confirmed in 32/43 (74%) screening positive patients who underwent BAL sampling. ICU mortality was 62% in patients with positive screening and confirmed CAPA, and 31% in CAPA cases who were screening negative. The sensitivity, specificity, positive and negative predictive value (PPV & NPV) of screening for CAPA were 0.71, 0.73, 0.27, and 0.95, respectively. The PPV was higher if screening was culture positive compared to PCR positive only, 0.42 and 0.12 respectively. CAPA was confirmed in 74% of screening positive patients, and culture of TA had a better diagnostic performance than PCR. Positive screening along with clinical manifestations appeared to be a good indication for BAL sampling since diagnosis of CAPA was confirmed in most of these patients. Prospective, systematic screening allowed to quickly gain insight into the epidemiology of fungal superinfections during the pandemic and could be applicable for future pandemics.


Subject(s)
COVID-19 , Intensive Care Units , Invasive Pulmonary Aspergillosis , Mass Screening , Humans , COVID-19/diagnosis , COVID-19/epidemiology , Prospective Studies , Male , Intensive Care Units/statistics & numerical data , Female , Middle Aged , Aged , Invasive Pulmonary Aspergillosis/diagnosis , Invasive Pulmonary Aspergillosis/epidemiology , Mass Screening/methods , Sensitivity and Specificity , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Bronchoalveolar Lavage Fluid/microbiology , Adult , Aspergillus/isolation & purification
4.
Microbiome Res Rep ; 3(1): 8, 2024.
Article in English | MEDLINE | ID: mdl-38455084

ABSTRACT

Aim: The bacterial microbiota is well-recognized for its role in Clostridioides difficile colonization and infection, while fungi and yeasts remain understudied. The aim of this study was to analyze the predictive value of the mycobiota and its interactions with the bacterial microbiota in light of C. difficile colonization and infection. Methods: The mycobiota was profiled by ITS2 sequencing of fecal DNA from C. difficile infection (CDI) patients (n = 29), asymptomatically C. difficile colonization (CDC) patients (n = 38), and hospitalized controls with C. difficile negative stool culture (controls; n = 38). Previously published 16S rRNA gene sequencing data of the same cohort were used additionally for machine learning and fungal-bacterial network analysis. Results: CDI patients were characterized by a significantly higher abundance of Candida spp. (MD 0.270 ± 0.089, P = 0.002) and Candida albicans (MD 0.165 ± 0.082, P = 0.023) compared to controls. Additionally, they were deprived of Aspergillus spp. (MD -0.067 ± 0.026, P = 0.000) and Penicillium spp. (MD -0.118 ± 0.043, P = 0.000) compared to CDC patients. Network analysis revealed a positive association between several fungi and bacteria in CDI and CDC, although the analysis did not reveal a direct association between Clostridioides spp. and fungi. Furthermore, the microbiota machine learning model outperformed the models based on the mycobiota and the joint microbiota-mycobiota model. The microbiota classifier successfully distinguished CDI from CDC [Area Under the Receiver Operating Characteristic (AUROC) = 0.884] and CDI from controls (AUROC = 0.905). Blautia and Bifidobacterium were marker genera associated with CDC patients and controls. Conclusion: The gut mycobiota differs between CDI, CDC, and controls and may affect Clostridioides spp. through indirect interactions. The mycobiota data alone could not successfully discriminate CDC from controls or CDI patients and did not have additional predictive value to the bacterial microbiota data. The identification of bacterial marker genera associated with CDC and controls warrants further investigation.

5.
Genome Med ; 16(1): 37, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38419010

ABSTRACT

BACKGROUND: Multidrug-resistant (MDR) bacteria are a growing global threat, especially in healthcare facilities. Faecal microbiota transplantation (FMT) is an effective prevention strategy for recurrences of Clostridioides difficile infections and can also be useful for other microbiota-related diseases. METHODS: We study the effect of FMT in patients with multiple recurrent C. difficile infections on colonisation with MDR bacteria and antibiotic resistance genes (ARG) on the short (3 weeks) and long term (1-3 years), combining culture methods and faecal metagenomics. RESULTS: Based on MDR culture (n = 87 patients), we notice a decrease of 11.5% in the colonisation rate of MDR bacteria after FMT (20/87 before FMT = 23%, 10/87 3 weeks after FMT). Metagenomic sequencing of patient stool samples (n = 63) shows a reduction in relative abundances of ARGs in faeces, while the number of different resistance genes in patients remained higher compared to stools of their corresponding healthy donors (n = 11). Furthermore, plasmid predictions in metagenomic data indicate that patients harboured increased levels of resistance plasmids, which appear unaffected by FMT. In the long term (n = 22 patients), the recipients' resistomes are still donor-like, suggesting the effect of FMT may last for years. CONCLUSIONS: Taken together, we hypothesise that FMT restores the gut microbiota to a composition that is closer to the composition of healthy donors, and potential pathogens are either lost or decreased to very low abundances. This process, however, does not end in the days following FMT. It may take months for the gut microbiome to re-establish a balanced state. Even though a reservoir of resistance genes remains, a notable part of which on plasmids, FMT decreases the total load of resistance genes.


Subject(s)
Clostridioides difficile , Clostridium Infections , Microbiota , Humans , Fecal Microbiota Transplantation/methods , Clostridioides difficile/genetics , Feces/microbiology , Clostridium Infections/therapy , Clostridium Infections/microbiology , Treatment Outcome
6.
Curr Microbiol ; 81(2): 63, 2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38217690

ABSTRACT

Methicillin-resistant Staphylococcus aureus (MRSA) colonization increases the risk of infection. Response to decolonization treatment is highly variable and determinants for successful decolonization or failure of eradication treatment are largely unknown. Insight into genetic predictors of eradication failure is potentially useful in clinical practice. The aim of this study was to explore genetic characteristics that are associated with MRSA decolonization failure. This cohort study was performed in a tertiary care hospital in the Netherlands. Patients with ≥ 1 positive MRSA culture from any site and with available whole -genome sequencing data of the MRSA isolate between 2017 and 2022 were included. Lineages, resistance, and virulence factors were stratified by MRSA decolonization outcome. In total, 56 patients were included: 12/56 (21%) with treatment failure and 44/56 (79%) with successful decolonization (with or without preceding treatment). A significant association was found between ciprofloxacin-resistant lineages and failure of eradication (OR 4.20, 95%CI 1.11-15.96, P = 0.04). Furthermore, livestock-associated MRSA and the major community-associated MRSA lineages ST6-t304 and ST8-t008 were associated with successful eradication treatment or spontaneous clearance. In conclusion, this explorative study showed a higher eradication failure rate in complicated MRSA carriers with ciprofloxacin-resistant MRSA lineages, which are predominantly healthcare-associated. Further studies are warranted to confirm the higher eradication failure risk of ciprofloxacin-resistant lineages, and identify the underlying mechanisms.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Methicillin-Resistant Staphylococcus aureus/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Cohort Studies , Staphylococcal Infections/drug therapy , Ciprofloxacin , Carrier State/drug therapy
7.
Adv Exp Med Biol ; 1435: 33-56, 2024.
Article in English | MEDLINE | ID: mdl-38175470

ABSTRACT

Diagnosis of Clostridioides difficile infection (CDI) can be challenging. First of all, there has been debate on which of the two reference assays, cell cytotoxicity neutralization assay (CCNA) or toxigenic culture (TC), should be considered the gold standard for CDI detection. Although the CCNA suffers most from suboptimal storage conditions and subsequent toxin degradation, TC is reported to falsely increase CDI detection rates as it cannot differentiate CDI patients from patients asymptomatically colonised by toxigenic C. difficile. Several rapid assays are available for CDI detection and fall into three broad categories: (1) enzyme immunoassays for glutamate dehydrogenase, (2) enzyme immunoassays or single-molecule array assays for toxins A/B and (3) nucleic acid amplification tests detecting toxin genes. All three categories have their own limitations, being suboptimal specificity and/or sensitivity or the inability to discern colonised patients from CDI patients. In light of these limitations, multi-step algorithmic testing has been advocated by international guidelines (IDSA/SHEA and ESCMID) in order to optimize diagnostic accuracy. As a result, a survey performed in 2018-2019 in Europe revealed that most of all hospital sites reported using more than one test to diagnose CDI. CDI incidence rates are also influenced by sample selection criteria, as several studies have shown that if not all unformed stool samples are tested for CDI, many cases may be missed due to an absence of clinical suspicion. Since methods for diagnosing CDI remain imperfect, there has been a growing interest in alternative testing strategies like faecal microbiota biomarkers, immune modulating interleukins, cytokines and imaging methods. At the moment, these alternative methods might play an adjunctive role, but they are not suitable to replace conventional CDI testing strategies.


Subject(s)
Clostridioides difficile , Humans , Clostridioides difficile/genetics , Affect , Biological Assay , Cytokines , Europe
8.
Adv Exp Med Biol ; 1435: 351-362, 2024.
Article in English | MEDLINE | ID: mdl-38175483

ABSTRACT

Clostridioides difficile (C. difficile) is a major nosocomial pathogen but is also increasingly recognised as an important diarrhoeal pathogen in the community, not always associated with antibiotics. The European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for C. difficile (ESGCD) is a group of clinicians, scientists, and others from many European countries and further afield, who share a common interest in C. difficile. The aims of the Study Group are centred around raising the profile of  C. difficile infection (CDI) in humans and animals, fostering collaboration amongst centres in different European countries and providing a forum for discussing and disseminating information. One of the principal aims of the Study Group is to raise awareness of C. difficile infections in Europe. ESGCD has a particular interest in the development and dissemination of European guidance on prevention, diagnosis, and treatment of CDI. This chapter will discuss the organisation of ESGCD within the ESCMID Study Group structure, the origins of the Study Group, the aims, and objectives of the group, and will highlight some of the past and present activities of ESGCD in relation to these.


Subject(s)
Clostridioides difficile , Communicable Diseases , Animals , Humans , Anti-Bacterial Agents/therapeutic use , Diarrhea , Europe/epidemiology
10.
Euro Surveill ; 28(50)2023 12.
Article in English | MEDLINE | ID: mdl-38099348

ABSTRACT

BackgroundThe COVID-19 pandemic resulted in adaptation in infection control measures, increased patient transfer, high occupancy of intensive cares, downscaling of non-urgent medical procedures and decreased travelling.AimTo gain insight in the influence of these changes on antimicrobial resistance (AMR) prevalence in the Netherlands, a country with a low AMR prevalence, we estimated changes in demographics and prevalence of six highly resistant microorganisms (HRMO) in hospitalised patients in the Netherlands during COVID-19 waves (March-June 2020, October 2020-June 2021, October 2021-May 2022 and June-August 2022) and interwaves (July-September 2020 and July-September 2021) compared with pre-COVID-19 (March 2019-February 2020).MethodsWe investigated data on routine bacteriology cultures of hospitalised patients, obtained from 37 clinical microbiological laboratories participating in the national AMR surveillance. Demographic characteristics and HRMO prevalence were calculated as proportions and rates per 10,000 hospital admissions.ResultsAlthough no significant persistent changes in HRMO prevalence were detected, some relevant non-significant patterns were recognised in intensive care units. Compared with pre-COVID-19 we found a tendency towards higher prevalence of meticillin-resistant Staphylococcus aureus during waves and lower prevalence of multidrug-resistant Pseudomonas aeruginosa during interwaves. Additionally, during the first three waves, we observed significantly higher proportions and rates of cultures with Enterococcus faecium (pooled 10% vs 6% and 240 vs 120 per 10,000 admissions) and coagulase-negative Staphylococci (pooled 21% vs 14% and 500 vs 252 per 10,000 admissions) compared with pre-COVID-19.ConclusionWe observed no substantial changes in HRMO prevalence in hospitalised patients during the COVID-19 pandemic.


Subject(s)
COVID-19 , Methicillin-Resistant Staphylococcus aureus , Humans , Netherlands/epidemiology , Prevalence , Pandemics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use
11.
Ned Tijdschr Geneeskd ; 1672023 10 18.
Article in Dutch | MEDLINE | ID: mdl-37850615

ABSTRACT

Here, we describe the epidemiology, diagnostics, and treatment of Clostridioides difficile infection (CDI) in the primary health care setting. CDI is traditionally considered as a healthcare associated infection. However, infections with onset in the community represent a large proportion of CDI. Traditional CDI risk factors apply to the population encountered in general practice: age ≥50 years, malignancy or other underlying disease, hospital admission and/or antibiotic treatment in the past 3 months. Notably, about a third has had no recent antibiotic exposure nor has been admitted to a hospital. Based on diagnostic tests requested by the general practitioner, only half of CDI cases will be diagnosed. In this setting, it is advisable to request a diagnostic C. difficile test for patients with persisting or severe diarrhea and negative tests for traditional enteropathogens (Salmonella, Shigella, Yersinia, Campylobacter), also in the absence of traditional risk factors for CDI.


Subject(s)
Clostridioides difficile , Clostridium Infections , Cross Infection , Humans , Middle Aged , Anti-Bacterial Agents/therapeutic use , Clostridium Infections/diagnosis , Clostridium Infections/drug therapy , Clostridium Infections/epidemiology , Hospitalization
12.
BMJ Open ; 13(10): e071766, 2023 10 05.
Article in English | MEDLINE | ID: mdl-37798034

ABSTRACT

INTRODUCTION: Experimental studies suggest a role of gut microbiota in the pathophysiology of Parkinson's disease (PD) via the gut-brain axis. The gut microbiota can also influence the metabolism of levodopa, which is the mainstay of treatment of PD. Therefore, modifying the gut microbiota by faecal microbiota transplantation (FMT) could be a supportive treatment strategy. METHODS AND ANALYSIS: We have developed a study protocol for a single-centre, prospective, self-controlled, interventional, safety and feasibility donor-FMT pilot study with randomisation and double-blinded allocation of donor faeces. The primary objectives are feasibility and safety of FMT in patients with PD. Secondary objectives include exploring whether FMT leads to alterations in motor complications (fluctuations and dyskinesias) and PD motor and non-motor symptoms (including constipation), determining alterations in gut microbiota composition, assessing donor-recipient microbiota similarities and their association with PD symptoms and motor complications, evaluating the ease of the study protocol and examining FMT-related adverse events in patients with PD. The study population will consist of 16 patients with idiopathic PD that use levodopa and experience motor complications. They will receive FMT with faeces from one of two selected healthy human donors. FMT will be administered via a gastroscope into the duodenum, after treatment with oral vancomycin, bowel lavage and domperidone. There will be seven follow-up moments during 12 months. ETHICS AND DISSEMINATION: This study was approved by the Medical Ethical Committee Leiden Den Haag Delft (ref. P20.087). Study results will be disseminated through publication in peer-reviewed journals and international conferences. TRIAL REGISTRATION NUMBER: International Clinical Trial Registry Platform: NL9438.


Subject(s)
Fecal Microbiota Transplantation , Parkinson Disease , Humans , Feasibility Studies , Fecal Microbiota Transplantation/adverse effects , Fecal Microbiota Transplantation/methods , Feces , Levodopa , Parkinson Disease/therapy , Parkinson Disease/etiology , Pilot Projects , Prospective Studies , Treatment Outcome
13.
Commun Med (Lond) ; 3(1): 123, 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37700016

ABSTRACT

BACKGROUND: Although the Netherlands is a country with a low endemic level, methicillin-resistant Staphylococcus aureus (MRSA) poses a significant health care problem. Therefore, high coverage national MRSA surveillance has been in place since 1989. To monitor possible changes in the type-distribution and emergence of resistance and virulence, MRSA isolates are molecularly characterized. METHODS: All 43,321 isolates from 36,520 persons, collected 2008-2019, were typed by multiple-locus variable number tandem repeats analysis (MLVA) with simultaneous PCR detection of the mecA, mecC and lukF-PV genes, indicative for PVL. Next-generation sequencing data of 4991 isolates from 4798 persons were used for whole genome multi-locus sequence typing (wgMLST) and identification of resistance and virulence genes. RESULTS: We show temporal change in the molecular characteristics of the MRSA population with the proportion of PVL-positive isolates increasing from 15% in 2008-2010 to 25% in 2017-2019. In livestock-associated MRSA obtained from humans, PVL-positivity increases to 6% in 2017-2019 with isolates predominantly from regions with few pig farms. wgMLST reveals the presence of 35 genogroups with distinct resistance, virulence gene profiles and specimen origin. Typing shows prolonged persistent MRSA carriage with a mean carriage period of 407 days. There is a clear spatial and a weak temporal relationship between isolates that clustered in wgMLST, indicative for regional spread of MRSA strains. CONCLUSIONS: Using molecular characterization, this exceptionally large study shows genomic changes in the MRSA population at the national level. It reveals waxing and waning of types and genogroups and an increasing proportion of PVL-positive MRSA.


A group of bacteria that cause difficult-to-treat infections in humans is methicillin-resistant Staphylococcus aureus (MRSA). The aim of this study was to monitor changes in the spread of MRSA, their disease causing potential and resistance to antibiotics used to treat MRSA infections. MRSA from patients and their contacts in the Netherlands were collected over a period of 12 years and characterized. This revealed new types of MRSA emerged and others disappeared. An increasing number of MRSA produces a protein called PVL toxin, enabling MRSA to cause more severe infections. Also, some people appear to carry MRSA without any disease for more than a year. These findings suggest an increasing disease potential of MRSA and possible unnoticed sources of infection. Consequently, it is important to maintain monitoring of these infections to minimize MRSA spread.

15.
Microbiol Spectr ; 11(3): e0377722, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37125917

ABSTRACT

Clostridioides difficile, the primary cause of nosocomial antibiotic-associated diarrhea, has a complex relationship with antibiotics. While the use of broad-spectrum antibiotics disrupts the gut microbiota and increases the risk of C. difficile infection (CDI), antibiotics are also the primary treatment for CDI. However, only a few antibiotics, including vancomycin, fidaxomicin, and rifaximin, are effective against CDI, and resistance to these antibiotics has emerged recently. In this study, we report the identification of two RT027 C. difficile clinical isolates (TGH35 and TGH64) obtained from symptomatic CDI-diagnosed patients in Tampa, Florida in 2016. These two strains showed an elevated minimum inhibitory concentration (MIC) of vancomycin (MIC = 4 µg/mL, compared to the EUCAST breakpoint of 2 µg/mL) and contained a vanRCd 343A>G mutation resulting in a Thr115Ala substitution in the VanRCd response regulator. This mutation was absent in the vancomycin-sensitive control epidemic strain RT027/R20291. TGH64 was also resistant to rifaximin (MIC ≥ 128 µg/mL) and carried the previously reported Arg505Lys and Ile548Met mutations in RpoB. Furthermore, we report on the antimicrobial resistance (AMR) and genomic characterization of additional C. difficile isolates, including RT106/TGH120, RT017/TGH33, and RT017/TGH51, obtained from the same patient sample cohort representing the highly prevalent and regionally distributed C. difficile ribotypes worldwide. Considering that the VanRCd Thr115Ala mutation was also independently reported in seven C. difficile clinical isolates from Texas and Israel in 2019, we recommend epidemiological surveillance to better understand the impact of this mutation on vancomycin resistance. IMPORTANCE The perpetually evolving antimicrobial resistance (AMR) of C. difficile is an important contributor to its epidemiology and is a grave concern to global public health. This exacerbates the challenge of treating the infections caused by this multidrug-resistant causative organism of potentially life-threatening diarrhea. Further, the novel resistance-determining factors can be transferred between different strains and species of bacteria and cause the spread of AMR in clinical, environmental, and community settings. In this study, we have identified a mutation (vanRCd 343A>G) that causes a Thr115Ala substitution and is linked to an increased MIC of vancomycin in clinical isolates of C. difficile obtained from Florida in 2016. Understanding the mechanisms of AMR, especially those of newly evolving strains, is essential to effectively guide antibiotic stewardship policies to combat antibiotic resistance as well as to discover novel therapeutic targets.


Subject(s)
Clostridioides difficile , Clostridium Infections , Humans , Vancomycin/pharmacology , Vancomycin/therapeutic use , Cadmium/pharmacology , Cadmium/therapeutic use , Rifaximin/pharmacology , Clostridioides , Florida , Clostridium Infections/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Microbial Sensitivity Tests , Diarrhea/drug therapy
16.
Lancet Infect Dis ; 23(7): e259-e265, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37062301

ABSTRACT

With the approval and development of narrow-spectrum antibiotics for the treatment of Clostridioides difficile infection (CDI), the primary endpoint for treatment success of CDI antibiotic treatment trials has shifted from treatment response at end of therapy to sustained response 30 days after completed therapy. The current definition of a successful response to treatment (three or fewer unformed bowel movements [UBMs] per day for 1-2 days) has not been validated, does not reflect CDI management, and could impair assessments for successful treatment at 30 days. We propose new definitions to optimise trial design to assess sustained response. Primarily, we suggest that the initial response at the end of treatment be defined as (1) three or fewer UBMs per day, (2) a reduction in UBMs of more than 50% per day, (3) a decrease in stool volume of more than 75% for those with ostomy, or (4) attainment of bowel movements of Bristol Stool Form Scale types 1-4, on average, by day 2 after completion of primary CDI therapy (ie, assessed on day 11 and day 12 of a 10-day treatment course) and following an investigator determination that CDI treatment can be ceased.


Subject(s)
Clostridioides difficile , Clostridium Infections , Humans , Anti-Bacterial Agents/therapeutic use , Feces , Clostridium Infections/drug therapy
17.
Clin Microbiol Infect ; 29(7): 891-896, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36871826

ABSTRACT

OBJECTIVES: To assess the value of screening for Clostridioides difficile colonization (CDC) at hospital admission in an endemic setting. METHODS: A multi-centre study was conducted at four hospitals located across the Netherlands. Newly admitted patients were screened for CDC. The risk of development of Clostridioides difficile infection (CDI) during admission and 1-year follow-up was assessed in patients with and without colonization. C. difficile isolates from patients with colonization were compared with isolates from incident CDI cases using core genome multi-locus sequence typing to determine whether onwards transmission had occurred. RESULTS: CDC was present in 108 of 2211 admissions (4.9%), whereas colonization with a toxigenic strain (toxigenic Clostridoides difficile colonization [tCDC]) was present in 68 of 2211 admissions (3.1%). Among these 108 patients with colonization, diverse PCR ribotypes were found and no 'hypervirulent' PCR ribotype 027 (RT027) was detected (95% CI, 0-0.028). None of the patients with colonization developed CDI during admission (0/49; 95% CI, 0-0.073) or 1-year follow-up (0/38; 95% CI, 0-0.93). Core genome multi-locus sequence typing identified six clusters with genetically related isolates from patients with tCDC and CDI; however, in these clusters, only one possible transmission event from a patient with tCDC to a patient with CDI was identified based on epidemiological data. CONCLUSION: In this endemic setting with a low prevalence of 'hypervirulent' strains, screening for CDC at admission did not detect any patients with CDC who progressed to symptomatic CDI and detected only one possible transmission event from a patient with colonization to a patient with CDI. Thus, screening for CDC at admission is not useful in this setting.


Subject(s)
Clostridioides difficile , Clostridium Infections , Humans , Clostridioides difficile/genetics , Clostridioides/genetics , Multilocus Sequence Typing , Hospitalization , Clostridium Infections/diagnosis , Clostridium Infections/epidemiology , Clostridium Infections/microbiology , Hospitals , Ribotyping
19.
JCI Insight ; 8(4)2023 02 22.
Article in English | MEDLINE | ID: mdl-36810253

ABSTRACT

Short-chain fatty acids, including butyrate, have multiple metabolic benefits in individuals who are lean but not in individuals with metabolic syndrome, with the underlying mechanisms still being unclear. We aimed to investigate the role of gut microbiota in the induction of metabolic benefits of dietary butyrate. We performed antibiotic-induced microbiota depletion of the gut and fecal microbiota transplantation (FMT) in APOE*3-Leiden.CETP mice, a well-established translational model for developing human-like metabolic syndrome, and revealed that dietary butyrate reduced appetite and ameliorated high-fat diet-induced (HFD-induced) weight gain dependent on the presence of gut microbiota. FMT from butyrate-treated lean donor mice, but not butyrate-treated obese donor mice, into gut microbiota-depleted recipient mice reduced food intake, attenuated HFD-induced weight gain, and improved insulin resistance. 16S rRNA and metagenomic sequencing on cecal bacterial DNA of recipient mice implied that these effects were accompanied by the selective proliferation of Lachnospiraceae bacterium 28-4 in the gut as induced by butyrate. Collectively, our findings reveal a crucial role of gut microbiota in the beneficial metabolic effects of dietary butyrate as strongly associated with the abundance of Lachnospiraceae bacterium 28-4.


Subject(s)
Butyrates , Metabolic Syndrome , Humans , Animals , Mice , Butyrates/adverse effects , Obesity/metabolism , RNA, Ribosomal, 16S , Weight Gain , Cell Proliferation
SELECTION OF CITATIONS
SEARCH DETAIL
...