Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Biol ; 21(11): e3002389, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37983289

ABSTRACT

The meningeal space is a critical brain structure providing immunosurveillance for the central nervous system (CNS), but the impact of infections on the meningeal immune landscape is far from being fully understood. The extracellular protozoan parasite Trypanosoma brucei, which causes human African trypanosomiasis (HAT) or sleeping sickness, accumulates in the meningeal spaces, ultimately inducing severe meningitis and resulting in death if left untreated. Thus, sleeping sickness represents an attractive model to study immunological dynamics in the meninges during infection. Here, by combining single-cell transcriptomics and mass cytometry by time-of-flight (CyTOF) with in vivo interventions, we found that chronic T. brucei infection triggers the development of ectopic lymphoid aggregates (ELAs) in the murine meninges. These infection-induced ELAs were defined by the presence of ER-TR7+ fibroblastic reticular cells, CD21/35+ follicular dendritic cells (FDCs), CXCR5+ PD1+ T follicular helper-like phenotype, GL7+ CD95+ GC-like B cells, and plasmablasts/plasma cells. Furthermore, the B cells found in the infected meninges produced high-affinity autoantibodies able to recognise mouse brain antigens, in a process dependent on LTß signalling. A mid-throughput screening identified several host factors recognised by these autoantibodies, including myelin basic protein (MBP), coinciding with cortical demyelination and brain pathology. In humans, we identified the presence of autoreactive IgG antibodies in the cerebrospinal fluid (CSF) of second stage HAT patients that recognised human brain lysates and MBP, consistent with our findings in experimental infections. Lastly, we found that the pathological B cell responses we observed in the meninges required the presence of T. brucei in the CNS, as suramin treatment before the onset of the CNS stage prevented the accumulation of GL7+ CD95+ GC-like B cells and brain-specific autoantibody deposition. Taken together, our data provide evidence that the meningeal immune response during chronic T. brucei infection results in the acquisition of lymphoid tissue-like properties, broadening our understanding of meningeal immunity in the context of chronic infections. These findings have wider implications for understanding the mechanisms underlying the formation ELAs during chronic inflammation resulting in autoimmunity in mice and humans, as observed in other autoimmune neurodegenerative disorders, including neuropsychiatric lupus and multiple sclerosis.


Subject(s)
Trypanosoma brucei brucei , Trypanosomiasis, African , Humans , Animals , Mice , Persistent Infection , Meninges/metabolism , Lymphoid Tissue/metabolism , Autoantibodies
2.
Nat Commun ; 14(1): 5279, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37644007

ABSTRACT

African trypanosomes colonise the skin to ensure parasite transmission. However, how the skin responds to trypanosome infection remains unresolved. Here, we investigate the local immune response of the skin in a murine model of infection using spatial and single cell transcriptomics. We detect expansion of dermal IL-17A-producing Vγ6+ cells during infection, which occurs in the subcutaneous adipose tissue. In silico cell-cell communication analysis suggests that subcutaneous interstitial preadipocytes trigger T cell activation via Cd40 and Tnfsf18 signalling, amongst others. In vivo, we observe that female mice deficient for IL-17A-producing Vγ6+ cells show extensive inflammation and limit subcutaneous adipose tissue wasting, independently of parasite burden. Based on these observations, we propose that subcutaneous adipocytes and Vγ6+ cells act in concert to limit skin inflammation and adipose tissue wasting. These studies provide new insights into the role of γδ T cell and subcutaneous adipocytes as homeostatic regulators of skin immunity during chronic infection.


Subject(s)
Dermatitis , Trypanosoma brucei brucei , Female , Animals , Mice , Interleukin-17 , Persistent Infection , Adiposity , Obesity , Cachexia , Inflammation
3.
Clin Infect Dis ; 73(1): 12-20, 2021 07 01.
Article in English | MEDLINE | ID: mdl-32638003

ABSTRACT

BACKGROUND: The diagnosis of gambiense human African trypanosomiasis (gHAT) typically involves 2 steps: a serological screen, followed by the detection of living trypanosome parasites in the blood or lymph node aspirate. Live parasites can, however, remain undetected in some seropositive individuals, who, we hypothesize, are infected with Trypanosoma brucei gambiense parasites in their extravascular dermis. METHODS: To test this hypothesis, we conducted a prospective observational cohort study in the gHAT focus of Forecariah, Republic of Guinea. Of the 5417 subjects serologically screened for gHAT, 66 were enrolled into our study and underwent a dermatological examination. At enrollment, 11 seronegative, 8 unconfirmed seropositive, and 18 confirmed seropositive individuals had blood samples and skin biopsies taken and examined for trypanosomes by molecular and immunohistological methods. RESULTS: In seropositive individuals, dermatological symptoms were significantly more frequent, relative to seronegative controls. T.b. gambiense parasites were present in the blood of all confirmed cases (n = 18) but not in unconfirmed seropositive individuals (n = 8). However, T. brucei parasites were detected in the extravascular dermis of all unconfirmed seropositive individuals and all confirmed cases. Skin biopsies of all treated cases and most seropositive untreated individuals progressively became negative for trypanosomes 6 and 20 months later. CONCLUSIONS: Our results highlight the skin as a potential reservoir for African trypanosomes, with implications for our understanding of this disease's epidemiology in the context of its planned elimination and underlining the skin as a novel target for gHAT diagnostics.


Subject(s)
Trypanosomiasis, African , Animals , Guinea , Humans , Prospective Studies , Trypanosoma brucei gambiense , Trypanosomiasis, African/diagnosis , Trypanosomiasis, African/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...