Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Viruses ; 13(7)2021 06 23.
Article in English | MEDLINE | ID: mdl-34201873

ABSTRACT

The aim of this study was the isolation and characterization, including the phage effect on honeybees in laboratory conditions, of phages active against Paenibacillus larvae, the causative agent of American Foulbrood-a highly infective and easily spreading disease occurring in honeybee larva, and subsequently the development of a preparation to prevent and treat this dangerous disease. From the tested material (over 2500 samples) 35 Paenibacillus spp. strains were obtained and used to search for phages. Five phages specific to Paenibacillus were isolated and characterized (ultrastructure, morphology, biological properties, storage stability, and genome sequence). The characteristics were performed to obtain knowledge of their lytic potential and compose the final phage cocktail with high antibacterial potential and intended use of future field application. Preliminary safety studies have also been carried out on healthy bees, which suggest that the phage preparation administered is harmless.


Subject(s)
Bacteriophages/isolation & purification , Bacteriophages/physiology , Bees/microbiology , Paenibacillus larvae/virology , Animals , Bacteriolysis , Bacteriophages/ultrastructure , Endotoxins/metabolism , Host Specificity , Paenibacillus larvae/metabolism , Poland
2.
Front Microbiol ; 11: 1913, 2020.
Article in English | MEDLINE | ID: mdl-32849478

ABSTRACT

American foulbrood is one of the most serious and yet unsolved problems of beekeeping around the world, because it causes a disease leading to the weakening of the vitality of honey bee populations and huge economic losses both in agriculture and horticulture. The etiological agent of this dangerous disease is an extremely pathogenic spore-forming bacterium, Paenibacillus larvae, which makes treatment very difficult. What is more, the use of antibiotics in the European Union is forbidden due to restrictions related to the prevention of the presence of antibiotic residues in honey, as well as the global problem of spreading antibiotic resistance in case of bacterial strains. The only available solution is burning of entire bee colonies, which results in large economic losses. Therefore, bacteriophages and their lytic enzymes can be a real effective alternative in the treatment and prevention of this Apis mellifera disease. In this review, we summarize phage characteristics that make them a potentially useful tool in the fight against American foulbrood. In addition, we gathered data regarding phage application that have been described so far, and attempted to show practical implications and possible limitations of their usage.

3.
Expert Rev Anti Infect Ther ; 17(8): 583-606, 2019 08.
Article in English | MEDLINE | ID: mdl-31322022

ABSTRACT

Introduction: Phages consist of nucleic acids and proteins that may lose their activity under different physico-chemical conditions. The production process of phage formulations may decrease phage infectivity. Ingredients present in the preparation may influence phage particles, although preparation and storage conditions may also cause variations in phage titer. Significant factors are the manner of phage application, the patient's immune system status, the type of medication being taken, and diet. Areas covered: We discuss factors determining phage activity and stability, which is relevant for the preparation and application of phage formulations with the highest therapeutic efficacy. Our article should be helpful for more insightful implementation of clinical trials, which could pave the way for successful phage therapy. Expert opinion: The number of naturally occurring phages is practically unlimited and phages vary in their susceptibility to external factors. Modern methods offer engineering techniques which should lead to enhanced precision in phage delivery and anti-bacterial activity. Recent data suggesting that phages may also be used in treating nonbacterial infections as well as anti-inflammatory and immunomodulatory agents add further weight to such studies. It may be anticipated that different phage activities could have varying susceptibility to factors determining their actions.


Subject(s)
Bacterial Infections/therapy , Bacteriophages/metabolism , Phage Therapy/methods , Animals , Bacteria/isolation & purification , Bacteriophages/chemistry , Humans
4.
Microb Biotechnol ; 12(4): 730-741, 2019 07.
Article in English | MEDLINE | ID: mdl-31037835

ABSTRACT

Bacteriophages draw scientific attention in medicine and biotechnology, including phage engineering, widely used to shape biological properties of bacteriophages. We developed engineered T4-derived bacteriophages presenting seven types of tissue-homing peptides. We evaluated phage accumulation in targeted tissues, spleen, liver and phage circulation in blood (in mice). Contrary to expectations, accumulation of engineered bacteriophages in targeted organs was not observed, but instead, three engineered phages achieved tissue titres up to 2 orders of magnitude lower than unmodified T4. This correlated with impaired survival of these phages in the circulation. Thus, engineering of T4 phage resulted in the short-circulating phage phenotype. We found that the complement system inactivated engineered phages significantly more strongly than unmodified T4, while no significant differences in phages' susceptibility to phagocytosis or immunogenicity were found. The short-circulating phage phenotype of the engineered phages suggests that natural phages, at least those propagating on commensal bacteria of animals and humans, are naturally optimized to escape rapid neutralization by the immune system. In this way, phages remain active for longer when inside mammalian bodies, thus increasing their chance of propagating on commensal bacteria. The effect of phage engineering on phage pharmacokinetics should be considered in phage design for medical purposes.


Subject(s)
Bacteriophage T4/immunology , Blood/virology , Recombinant Proteins/metabolism , Viral Proteins/metabolism , Viral Tropism , Administration, Intravenous , Animals , Bacteriophage T4/genetics , Complement System Proteins/metabolism , Mice , Microbial Viability , Recombinant Proteins/genetics , Viral Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...