Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 9(50): eadh3156, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38100588

ABSTRACT

One of the largest explosive eruptions instrumentally recorded occurred at Hunga volcano on 15 January 2022. The magma plumbing system under this volcano is unexplored because of inherent difficulties caused by its submarine setting. We use marine gravity data derived from satellite altimetry combined with multibeam bathymetry to model the architecture and dynamics of the magmatic system before and after the January 2022 eruption. We provide geophysical evidence for substantial high-melt content magma accumulation in three reservoirs at shallow depths (2 to 10 kilometers) under the volcano. We estimate that less than ~30% of the existing magma was evacuated by the main eruptive phases, enough to trigger caldera collapse. The eruption and caldera collapse reorganized magma storage, resulting in an increased connectivity between the two spatially distinct reservoirs. Modeling global satellite altimetry-derived gravity data at undersea volcanoes offer a promising reconnaissance tool to probe the subsurface for eruptible magma.

2.
Nat Commun ; 14(1): 7881, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38036504

ABSTRACT

The impacts of large terrestrial volcanic eruptions are apparent from satellite monitoring and direct observations. However, more than three quarters of all volcanic outputs worldwide lie submerged beneath the ocean, and the risks they pose to people, infrastructure, and benthic ecosystems remain poorly understood due to inaccessibility and a lack of detailed observations before and after eruptions. Here, comparing data acquired between 2015 - 2017 and 3 months after the January 2022 eruption of Hunga Volcano, we document the far-reaching and diverse impacts of one of the most explosive volcanic eruptions ever recorded. Almost 10 km3 of seafloor material was removed during the eruption, most of which we conclude was redeposited within 20 km of the caldera by long run-out seafloor density currents. These powerful currents damaged seafloor cables over a length of >100 km, reshaped the seafloor, and caused mass-mortality of seafloor life. Biological (mega-epifaunal invertebrate) seafloor communities only survived the eruption where local topography provided a physical barrier to density currents (e.g., on nearby seamounts). While the longer-term consequences of such a large eruption for human, ecological and climatic systems are emerging, we expect that these previously-undocumented refugia will play a key role in longer-term ecosystem recovery.

3.
Science ; 381(6662): 1085-1092, 2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37676954

ABSTRACT

Volcanic eruptions on land create hot and fast pyroclastic density currents, triggering tsunamis or surges that travel over water where they reach the ocean. However, no field study has documented what happens when large volumes of erupted volcanic material are instead delivered directly into the ocean. We show how the rapid emplacement of large volumes of erupted material onto steep submerged slopes triggered extremely fast (122 kilometers per hour) and long-runout (>100 kilometers) seafloor currents. These density currents were faster than those triggered by earthquakes, floods, or storms, and they broke seafloor cables, cutting off a nation from the rest of the world. The deep scours excavated by these currents are similar to those around many submerged volcanoes, providing evidence of large eruptions at other sites worldwide.

4.
Sci Rep ; 13(1): 14435, 2023 Sep 02.
Article in English | MEDLINE | ID: mdl-37660204

ABSTRACT

The 15 January 2022 submarine eruption at Hunga volcano was the most explosive volcanic eruption in 140 years. It involved exceptional magma and seawater interaction throughout the entire submarine caldera collapse. The submarine volcanic jet breached the sea surface and formed a subaerial eruptive plume that transported volcanic ash, gas, sea salts and seawater up to ~ 57 km, reaching into the mesosphere. We document high concentrations of sea salts in tephra (volcanic ash) collected shortly after deposition. We also discuss the potential climatic consequences of large-scale injection of salts into the upper atmosphere during submarine eruptions. Sodium chloride in these volcanic plumes can reach extreme concentrations, and dehalogenation of chlorides and bromides poses the risk of long-term atmospheric and weather impact. Salt content in rapidly collected tephra samples may also be used as a proxy to estimate the water:magma ratio during eruption, with implications for quantification of fragmentation efficiency in submarine breaching events. The balance between salt loading into the atmosphere versus deposition in ash aggregates is a key factor in understanding the atmospheric and climatic consequences of submarine eruptions.

5.
Pure Appl Geophys ; 180(1): 1-22, 2023.
Article in English | MEDLINE | ID: mdl-36590884

ABSTRACT

On January 15th, 2022, at approximately 4:47 pm local time (0347 UTC), several weeks of heightened activity at the Hunga volcano 65 km northwest of Tongatapu, culminated in an 11-h long violent eruption which generated a significant near-field tsunami. Although the Kingdom of Tonga lies astride a large and tsunamigenic subduction zone, it has relatively few records of significant tsunami. Assessment activities took place both remotely and locally. Between March and June 2022, a field team quantified tsunami runup and inundation on the main populated islands Tongatapu and Eua, along with several smaller islands to the north, including the Ha'apai Group. Peak tsunami heights were ~ 19 m in western Tongatapu, ~ 20 m on south-eastern Nomuka Iki island and ~ 20 m on southern Tofua, located ~ 65 km S and E and 90 km N from Hunga volcano, respectively. In western Tongatapu, the largest tsunami surge overtopped a 13-15 m-high ridge along the narrow Hihifo peninsula in several locations. Analysis of tide gauge records from Nukualofa (which lag western Tongatapu arrivals by ~ 18-20 min), suggest that initial tsunami surges were generated prior to the largest volcanic explosions at ~ 0415 UTC. Further waves were generated by ~ 0426 UTC explosions that were accompanied by air-pressure waves. Efforts to model this event are unable to reproduce the timing of the large tsunami wave that toppled a weather station and communication tower on a 13 m-high ridge on western Tongatapu after 0500 UTC. Smaller tsunami waves continued until ~ 0900, coincident with a second energetic phase of eruption, and noted by eyewitnesses on Tungua and Mango Islands. Despite an extreme level of destruction caused by this tsunami, the death toll was extraordinarily low (4 victims). Interviews with witnesses and analysis of videos posted on social media suggest that this can be attributed to the arrival of smaller 'pre tsunami' waves that prompted evacuations, heightened tsunami awareness due to tsunami activity and advisories on the day before, the absence of tourists and ongoing tsunami education efforts since the 2009 Niuatoputapu, Tonga tsunami. This event highlights an unexpectedly great hazard from volcanic tsunami worldwide, which in Tonga's case overprints an already extreme level of tectonic tsunami hazard. Education and outreach efforts should continue to emphasize the 'natural warning signs' of strong ground shaking and unusual wave and current action, and the importance of self-evacuation from coastal areas of low-lying islands. The stories of survival from this event can be used as global best practice for personal survival strategies from future tsunami. Supplementary Information: The online version contains supplementary material available at 10.1007/s00024-022-03215-5.

SELECTION OF CITATIONS
SEARCH DETAIL
...