Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Language
Publication year range
1.
Sci Rep ; 14(1): 10349, 2024 05 06.
Article in English | MEDLINE | ID: mdl-38710789

ABSTRACT

Mastitis is a multifactorial inflammatory disease. The increase in antibiotic resistance of bacteria that cause mastitis means that cattle breeders would prefer to reduce the use of antibiotics. Recently, therapies using mesenchymal stem cells (MSCs) from various sources have gained significant interest in the development of regenerative medicine in humans and animals, due to their extraordinary range of properties and functions. The aim of this study was to analyze the effectiveness of an allogeneic stem cells derived from bone marrow (BMSC) and adipose tissue (ADSC) in treating mastitis in dairy cattle. The research material consisted of milk and blood samples collected from 39 Polish Holstein-Friesian cows, 36 of which were classified as having mastitis, based on cytological evaluation of their milk. The experimental group was divided into subgroups according to the method of MSC administration: intravenous, intramammary, and intravenous + intramammary, and according to the allogeneic stem cells administered: BMSC and ADSC. The research material was collected at several time intervals: before the administration of stem cells, after 24 and 72 h, and after 7 days. Blood samples were collected to assess hematological parameters and the level of pro-inflammatory cytokines, while the milk samples were used for microbiological assessment and to determine the somatic cells count (SCC). The administration of allogeneic MSCs resulted in a reduction in the total number of bacterial cells, Staphylococcus aureus, bacteria from the Enterobacteriaceae group, and a systematic decrease in SCC in milk. The therapeutic effect was achieved via intravenous + intramammary or intramammary administration.


Subject(s)
Mastitis, Bovine , Mesenchymal Stem Cell Transplantation , Milk , Animals , Cattle , Female , Mastitis, Bovine/therapy , Mastitis, Bovine/microbiology , Milk/cytology , Milk/microbiology , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/cytology , Adipose Tissue/cytology , Cytokines/metabolism , Cytokines/blood
2.
Sci Rep ; 13(1): 21539, 2023 12 06.
Article in English | MEDLINE | ID: mdl-38057392

ABSTRACT

The aim of this study was to identify the c.495C > T polymorphism within exon 1 of the osteopontin gene (OPN), and to analyze its association with susceptibility to ketosis in Polish Holstein-Friesian (HF) cows. The study utilized blood samples from 977 HF cows, for the determination of ß-hydroxybutyric acid (BHB) and for DNA isolation. The c.495C > T polymorphism of the bovine osteopontin gene was determined by PCR-RFLP. The CT genotype (0.50) was deemed the most common, while TT (0.08) was the rarest genotype. Cows with ketosis most often had the CC genotype, while cows with the TT genotype had the lowest incidence of ketosis. To confirm the relationship between the genotype and ketosis in cows, a weight of evidence (WoE) was generated. A very strong effect of the TT genotype on resistance to ketosis was demonstrated. The distribution of the ROC curve shows that the probability of resistance to ketosis is > 75% if cows have the TT genotype of the OPN gene (cutoff value is 0.758). Results suggest that TT genotype at the c.495C > T locus of the OPN gene might be effective way to detect the cows with risk of ketosis.


Subject(s)
Cattle Diseases , Ketosis , Female , Cattle , Animals , Milk , Osteopontin/genetics , Ketosis/genetics , Ketosis/veterinary , Polymorphism, Genetic , 3-Hydroxybutyric Acid , Cattle Diseases/diagnosis , Lactation
3.
Animals (Basel) ; 9(11)2019 Nov 18.
Article in English | MEDLINE | ID: mdl-31752182

ABSTRACT

In the recent years, antioxidant properties of food products have become an important aspect for consumers. Milk is a very good source of easily absorbable proteins and minerals, as well as a valuable source of antioxidants. Lipocalin-2 (LCN2), given that, inter alia, it is produced in large quantities by various types of cells in response to oxidative stress caused by physical or chemical factors, it can be considered a protein that determines the total antioxidant capacity of milk. The main objective of this study was to analyze polymorphisms within the lipocalin-2 gene and to determine their impact on antioxidant activity of milk from Holstein-Friesian cows. The genotyping was carried out by sequencing of PCR products. To determine the antioxidant activity of milk, the Trolox equivalent antioxidant capacity (TEAC) method was used. A total of four polymorphic sites were identified in the examined segment of the bovine lipocalin-2 gene. It was shown that cows of the CC genotype at the locus g.98793763G>C produced milk of significantly higher antioxidant capacity. The antioxidant capacity of milk also varied according to the age of cows, their daily milk yield, and SCC in milk.

4.
Electron. j. biotechnol ; 40: 17-21, July. 2019. tab, ilus
Article in English | LILACS | ID: biblio-1053211

ABSTRACT

Background: Mastitis is one of the most serious diseases of dairy cattle, causing substantial financial losses. While predisposition to reduced somatic cell count in milk has been considered for in cattle breeding programs as the key indicator of udder health status, scientists are seeking genetic markers of innate immune response, which could be helpful in selecting cows with improved immunity to mastitis. Lipocalin-2 (LCN2) is a protein involved in the response of the immune system by eliminating iron ions which are necessary for the growth of pathogenic bacteria, so LCN2 may be considered as a natural bacteriostatic agent and could become a marker of infection. Results: A total of five SNPs were identified in LCN2 gene (one in the promoter, three in exon 1, and one in intron 1). A single haplotype block was identified. The locus g.98793763GNC was found to have a significant impact on protein levels in milk, and alleles of this locus were identified to have a significant positive dominance effect on this trait. None of the four analysed loci had a statistically significant impact on the milk yield, fat levels in milk or the somatic cell score. LCN-2 gene had no significant impact on the incidence of mastitis in the cows. Conclusions: Although the identified SNPs were not found to have any impact on the somatic cell count or the incidence of mastitis in cows, it seems that further research is necessary, covering a larger population of cattle, to confirm the association between lipocalin-2 and milk production traits and mastitis.


Subject(s)
Animals , Cattle , Polymorphism, Genetic , Milk/immunology , Lipocalin-2/genetics , Mastitis, Bovine/genetics , Haplotypes , Breeding , Polymorphism, Single Nucleotide , Alleles , Lipocalin-2/chemistry , Mammary Glands, Animal , Mastitis, Bovine/immunology
5.
Mol Biol Rep ; 45(5): 917-923, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29987477

ABSTRACT

The major histocompatibility complex in cattle (BoLA) is regulated by genes that are closely related to the development of the immunological response to pathogens. The most polymorphic BoLA-DRB3.2 locus was analysed in 209 black-and-white Holstein-Friesian cows in Poland in order to a better explanation of influence of MHC on immunity to diseases in dairy cattle. A total of 23 alleles were identified, among which the *24, *16 and *22 alleles were observed with the highest frequency. These alleles were analysed in terms of their association with the occurrence of mastitis, ovarian cysts, retained placenta and uterine abscesses as well as their contribution to production traits (milk yield, protein and fat percentage in milk). It was determined that the BoLA-DRB3.2 *22 and *16 alleles were associated with a lower risk of clinical mastitis; however, a statistical significance was observed only for the *22 allele. Clinical mastitis was observed at a frequency lower by 8% in cows with one copy of the *22 allele compared to cows with 0 copies of the allele. The presence of the *22 allele in the genotype was also associated with higher milk yield, although this association was not statistically significant.


Subject(s)
Histocompatibility Antigens Class II/genetics , Lactation/genetics , Mastitis, Bovine/genetics , Alleles , Animals , Cattle , Female , Gene Frequency/genetics , Genetic Predisposition to Disease , Genotype , Histocompatibility Antigens Class II/physiology , Immunity/genetics , Incidence , Ovary/physiopathology , Phenotype , Poland
6.
J Dairy Res ; 84(2): 159-164, 2017 May.
Article in English | MEDLINE | ID: mdl-28524010

ABSTRACT

Myeloperoxidase (MPO) is an important enzyme, which is one of the components of the antibacterial system in neutrophils and monocytes. MPO participates in the inflammatory response in multiple locations in the body, including the mammary glands. As a result of the activity of MPO, many oxidising compounds as well as reactive oxygen species are generated. It seems that myeloperoxidase may be a marker linking inflammation processes and oxidative stress. So far, there are no literature data on the association between the MPO gene polymorphism and the antioxidant properties of milk. The aim of the study was to analyse the effect of g.9476869G > A polymorphism of myeloperoxidase (MPO) gene and age of cows on the antioxidant activity of milk and other milk traits in Polish Holstein-Friesian cows. Polymorphism of MPO gene was identified by the PCR-RFLP method using the HphI endonuclease. The total antioxidant capacity of milk samples was measured by the Trolox Equivalent Antioxidant Capacity (TEAC) method. It was found that the GG genotype was the most frequent (0·606). The genotype at the tested MPO locus and the age of the animals affected the antioxidant activity of milk. Milk from cows with the GA genotype was characterised by a significantly higher antioxidant activity than milk from cows with the GG genotype (P < 0·0001). The analysis of interaction showed that cows with the GA genotype and older than 6·5 years produced milk with a significantly higher antioxidant activity compared with younger cows with the same genotype (P < 0·0001), as well as cows with the GG genotype of all ages (P < 0·0001).


Subject(s)
Antioxidants/analysis , Cattle/genetics , Genotype , Milk/chemistry , Peroxidase/genetics , Polymorphism, Single Nucleotide/genetics , Aging , Animals , DNA/isolation & purification , Female , Gene Frequency , Lactation , Milk/cytology , Milk/enzymology , Poland , Polymerase Chain Reaction/veterinary , Polymorphism, Restriction Fragment Length
8.
Anim Biotechnol ; 27(2): 113-7, 2016.
Article in English | MEDLINE | ID: mdl-26913552

ABSTRACT

Isolation of genomic DNA is one of the basic steps in many different molecular analyses. There are a few reports on methods of DNA isolation from milk, but many of them are time consuming and expensive, and require relatively large volumes of raw milk. In this study a rapid, sensitive, and efficient method of DNA extraction from milk somatic cells of various mammals (cattle, sheep, goats, horses) is presented. It was found that milk is a good source of genomic DNA, and to obtain a sufficient amount and quality of DNA, suitable for molecular analysis such as PCR, 10 mL of raw milk is sufficient. Thanks to this method, stress in animals can be reduced during collection of researched material. Therefore, this method could be widely used in molecular analyses.


Subject(s)
DNA/isolation & purification , Milk/chemistry , Milk/cytology , Animals , Cattle , DNA/analysis , DNA/chemistry , Goats , Horses , Polymerase Chain Reaction , Sheep
SELECTION OF CITATIONS
SEARCH DETAIL
...