Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Biomedicines ; 12(4)2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38672088

ABSTRACT

Psoriasis, a prevalent inflammatory skin disorder affecting a significant percentage of the global population, poses challenges in its management, necessitating the exploration of novel cost-effective and widely accessible therapeutic options. This study investigates the potential of ursolic acid (UA), a triterpenoid known for its anti-inflammatory and pro-apoptotic properties, in addressing psoriasis-related inflammation and keratinocyte hyperproliferation. The research involved in vitro models employing skin and immune cells to assess the effects of UA on psoriasis-associated inflammation. The presented research demonstrates the limiting effects of UA on IL-6 and IL-8 production in response to the inflammatory stimuli and limiting effects on the expression of psoriatic biomarkers S100A7, S100A8, and S100A9. Further, the study reveals promising outcomes, demonstrating UA's ability to mitigate inflammatory responses and hyperproliferation of keratinocytes by the induction of non-inflammatory apoptosis, as well as a lack of the negative influence on other cell types, including immune cells. Considering the limitations of UA's poor solubility, hybrid systems were designed to enhance its bioavailability and developed as hybrid nano-emulsion and bi-gel topical systems to enhance bioavailability and effectiveness of UA. One of them in particular-bi-gel-demonstrated high effectiveness in limiting the pathological response of keratinocytes to pro-psoriatic stimulation; this was even more prominent than with ursolic acid alone. Our results indicate that topical formulations of ursolic acid exhibit desirable anti-inflammatory activity in vitro and may be further employed for topical psoriasis treatment.

2.
Pharmaceutics ; 15(11)2023 Oct 31.
Article in English | MEDLINE | ID: mdl-38004538

ABSTRACT

Psoriasis is a chronic disorder that causes a rash with itchy, scaly patches. It affects nearly 2-5% of the worldwide population and has a negative effect on patient quality of life. A variety of therapeutic approaches, e.g., glucocorticoid topical therapy, have shown limited efficacy with systemic adverse reactions. Therefore, novel therapeutic agents and physicochemical formulations are in constant need and should be obtained and tested in terms of effectiveness and minimization of side effects. For that reason, the aim of our study was to design and obtain various hybrid systems, nanoemulgel-macroemulsion and nanoemulgel-oleogel (bigel), as vehicles for ursolic acid (UA) and to verify their potential as topical formulations used in psoriasis treatment. Obtained topical formulations were characterized by conducting morphological, rheological, texture, and stability analysis. To determine the safety and effectiveness of the prepared ursolic acid carriers, in vitro studies on human keratinocyte cell-like HaCaT cells were performed with cytotoxicity analysis for individual components and each formulation. Moreover, a kinetic study of ursolic acid release from the obtained systems was conducted. All of the studied UA-loaded systems were well tolerated by keratinocyte cells and had suitable pH values and stability over time. The obtained formulations exhibit an apparent viscosity, ensuring the appropriate time of contact with the skin, ease of spreading, soft consistency, and adherence to the skin, which was confirmed by texture tests. The release of ursolic acid from each of the formulations is followed by a slow, controlled release according to the Korsmeyer-Peppas and Higuchi models. The elaborated systems could be considered suitable vehicles to deliver triterpene to psoriatic skin.

3.
Biomater Adv ; 148: 213362, 2023 May.
Article in English | MEDLINE | ID: mdl-36921462

ABSTRACT

The aim of this study was to develop a dressing with bioactive lavender in a new form of nanoemulsion, and to verify its biosafety and effectiveness in burn wound healing. As part of this research, the composition of the bioactive carrier of lavender oil in the form of a nanoemulsion obtained using ultrasound was optimised. The mean particle size of the internal phase and polydispersity were determined using the dynamic light scattering method using a Zestasizer NanoZS by Malvern and using cryo-transmission electron microscopy (TEM). These studies confirmed that the selected formulation had a particle size of approximately 180 nm and remained stable over time. The preparation was also subjected to rheological analysis (viscosity approximately 480 mPa·s) and a pH test (approximately 6). A macroemulsion (ME) with the same qualitative composition was developed as a reference. Nanoformulations and MEs were tested for skin penetration using Raman spectroscopy in an in vitro model. Research has shown that both formulations deliver oil to living layers of the skin. Subsequently, studies were conducted to confirm the effect of lavender oil in emulsion systems on the mitigation of the inflammatory reaction and its pro-regenerative effect on the wound healing process in an in vitro cell culture model. The safe concentration of the oil in the emulsion preparation was also determined based on preliminary in vivo tests of skin sensitisation and irritation as well as an hemocompatibility test of the preparation.


Subject(s)
Lavandula , Oils, Volatile , Emulsions , Wound Healing , Oils, Volatile/pharmacology , Oils, Volatile/therapeutic use , Bandages
4.
Materials (Basel) ; 14(16)2021 Aug 21.
Article in English | MEDLINE | ID: mdl-34443245

ABSTRACT

This work investigates the possibility of using thiolated silicone oils as new components in protective creams and their impact on the efficacy of these products. Thiolated silicone oils were synthesized by amide bond formation between primary amino groups of poly17dimethylsiloxane-co-(3-aminopropyl)-methylsiloxane] and carboxylic groups of thiol ligand (3-mercaptopropionic acid) with carbodiimide as a coupling agent. To evaluate and compare the properties of these kinds of thiomers, three different emulsion o/w types were obtained. Emulsion E1 contained methyl silicone oil, E2 poly[dimethylsiloxane-co-(3-aminopropyl)-methylsiloxane], and E3 thiolated silicone oil (silicone-MPA), respectively. Physicochemical properties, including pH, conductivity, droplet size distribution, viscosity, and stability, were assessed. The efficacy of barrier creams in the prevention of occupational skin diseases depends on their mechanical and rheological properties. Thus, the method which imitates the spreadability conditions on the skin and how structure reconstruction takes places was performed. We also investigated textural profile, bioadhesion, protection against water and detergents, and water vapor permeability. Emulsion E3 was characterized by beneficial occlusion, spreadability, and adhesion properties. These features with prolonged residence time on the skin can make designed barrier creams more preferable for consumers.

5.
Int J Mol Sci ; 22(10)2021 May 12.
Article in English | MEDLINE | ID: mdl-34066105

ABSTRACT

Psoriasis is a chronic skin disease, and it is especially characterized by the occurrence of red, itchy, and scaly eruptions on the skin. The quality of life of patients with psoriasis is decreased because this disease remains incurable, despite the rapid progress of therapeutic methods and the introduction of many innovative antipsoriatic drugs. Moreover, many patients with psoriasis are dissatisfied with their current treatment methods and the form with which the drug is applied. The patients complain about skin irritation, clothing stains, unpleasant smell, or excessive viscosity of the preparation. The causes of these issues should be linked with little effectiveness of the therapy caused by low permeation of the drug into the skin, as well as patients' disobeying doctors' recommendations, e.g., concerning regular application of the preparation. Both of these factors are closely related to the physicochemical form of the preparation and its rheological and mechanical properties. To improve the quality of patients' lives, it is important to gain knowledge about the specific form of the drug and its effect on the safety and efficacy of a therapy as well as the patients' comfort during application. Therefore, we present a literature review and a detailed analysis of the composition, rheological properties, and mechanical properties of polymeric gels as an alternative to viscous and greasy ointments. We discuss the following polymeric gels: hydrogels, oleogels, emulgels, and bigels. In our opinion, they have many characteristics (i.e., safety, effectiveness, desired durability, acceptance by patients), which can contribute to the development of an effective and, at the same time comfortable, method of local treatment of psoriasis for patients.


Subject(s)
Dermatologic Agents/administration & dosage , Gels/administration & dosage , Polymers/chemistry , Psoriasis/drug therapy , Animals , Gels/chemistry , Humans
6.
Regul Toxicol Pharmacol ; 103: 113-123, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30664900

ABSTRACT

The efficiency of barier creams (BC) in the prevention of occupational skin diseases is closely related to their mechanical, rheological but also sensory properties. The measurement procedure we elaborated, which simulates the spreadability conditions on the skin and evaluation whether the structure reconstruction occurs (hysteresis loop test, shear rate dependence of normal force), allows the assessment of the effectivness of the BC in terms of mechanical resistance and its adhesion to the skin surface. In this thesis an effort was made to define the impact of the human factor - the product application on skin - on the efficiency of medical devices for cutaneous use. Creams' performance such as the spreadability or the feeling on the skin during and after application, which mostly determine users willingness to use them systematically and rigorously, have been linked to parameters obtained during the structure analysis and to rheological properties. Moreover an attempt has been made to correlate the values of basic textural properties with rheological parameters determined by viscoelasticity and classic flow analysis. Instrumental analysis of selected BC products demonstrated a good correlation with organoleptic tests carried out on probands. The applicability of our tool for quality evaluation of BC has been confirmed.


Subject(s)
Quality Control , Rheology , Skin Cream/chemistry , Skin Cream/standards , Humans , Skin Cream/analysis
7.
Int J Occup Saf Ergon ; 24(1): 129-134, 2018 Mar.
Article in English | MEDLINE | ID: mdl-28320261

ABSTRACT

INTRODUCTION: With the current increases in occupational skin diseases, literature data attesting the decreasing efficiency of barrier creams with respect to the manufacturer's declarations and legal regulations granting skin protection gels for employees, research is required to analyse and evaluate the recipes used for hydrophilic skin protection gels based on polyacrylates. METHODS: This study investigated the rheological properties, pH and sensory perception of hydrophilic barrier gels based on polyacrylates. RESULTS: The acrylic acid derivatives used were good thickeners, and helped to form transparent gels of adequate durability. They could be used to create hydrophilic films on the surface of the skin to protect it against hydrophobic substances. A correlation was shown between the results of the rheological properties and the barrier properties of the gels. This confirms the possibility of monitoring the quality of the gels at the stage of recipe development. CONCLUSIONS: Polyacrylates are viable for use in industry to produce hydrophilic barrier creams suitable for skin protection.


Subject(s)
Acrylic Resins , Rheology , Skin Cream/chemistry , Colloids/chemistry , Gels/chemistry , Humans , Hydrogen-Ion Concentration , Viscosity
SELECTION OF CITATIONS
SEARCH DETAIL
...