Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124339, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38696995

ABSTRACT

The FDA (Food and Drug Administration, (USA)) lists ZnO as a material that is widely acknowledged to be safe. ZnO NPs with a range of tiny particle sizes were made using the precipitation process. ZnO nanoparticles' surface is embellished with a tripodal sensor containing naphthol units. The assembly with the same receptor decorated on ZnO NPs is contrasted with the cation detection capabilities of the purified tripodal receptor. The UV-visible spectrophotometric analysis was conducted to study the state transitions of the receptor and the decorated ZnO receptor. A positive selectivity to Al3+ cations is determined by the fluorescence study under ideal circumstances. The particle size and surface morphologies are determined by DLS and SEM analysis for the same receptor - TP1 and embellished with a tripodal receptor TP2. Using a fluorescence switch-on Photoinduced Electron Transfer (PET) mechanism, the receptor coated on ZnO detects the presence of Al3+ ions with specificity. The binding constant value was determined using the B-H plot equation. Binding stoichiometry for [TP1-Al3+, TP2-Al3+] showed a 1:1 ratio. The fluorescence switches ON-OFF process of the ZnO surface adorned - TP2 with Tripodal receptor- TP1 was used to create molecular logic gates, which can function as a module for sensors and molecular switches. The addition of Na2EDTA in the solution of the [TP1; TP2 - Al3+] complex resulted in a noticeable reduction in the emission of fluorescence. This finding offers compelling support for the reversibility of the chemosensor. To enable the practical application of this sensor, we have developed a cassette containing receptors TP1 and TP2. Successfully, it can detect Al3+ metal ions. We performed a comprehensive assessment of the dependability and appropriateness of our approach in measuring the concentration of Al3+ ions in wastewater produced by important industrial procedures.

2.
J Biomol Struct Dyn ; : 1-10, 2023 Jul 04.
Article in English | MEDLINE | ID: mdl-37403277

ABSTRACT

The novel synthetic amino acid-like zwitterion containing imine bond ionic compound 2-[(E)-(2-carboxy benzylidene) amino] ethan ammonium salt, C10H12N2O2, was synthesized. Computational functional characterization is now being used to predict novel compounds. Here, we report on a titled combination that has been crystallizing in orthorhombic space group Pcc2 with Z = 4. The zwitterions form centrosymmetric dimers to polymeric supramolecular network via intermolecular N-H… O hydrogen bonds between the carboxylate groups and ammonium ion. The components are linked by ionic (N+-H-O-) and hydrogen bonds (N+-H-O), forming a complex three-dimensional supramolecular network. Further, molecular computational docking characterization study was performed with compound against multi-disease drug target biomolecule of anticancer target molecule of HDAC8 (PDB ID 1T69) receptor and antiviral molecular target protease (PDB ID 6LU7) to evaluate the interaction stability, conformational changes and to get insights into the natural dynamics on different timescales in solution. HighlightsThe novel zwitter ionic amino acid compound 2-[(E)-(2-carboxybenzylidene) amino] ethan ammonium salt, C10H12N2O2.The crystal structure determined for this compound illustrates the presence of intermolecular ionic N+-H-O- and N+-H-O hydrogen bonds between the carboxylate groups and ammonium ion, which influence the formation of a complex three-dimensional supramolecular polymeric network.Molecular docking studies helps to understand the conformational stability and interaction stabilityThe novel molecule can be considered for anticancer treatment.

SELECTION OF CITATIONS
SEARCH DETAIL
...