Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 116
Filter
1.
Metabolomics ; 20(4): 73, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980450

ABSTRACT

INTRODUCTION: During the Metabolomics 2023 conference, the Metabolomics Quality Assurance and Quality Control Consortium (mQACC) presented a QA/QC workshop for LC-MS-based untargeted metabolomics. OBJECTIVES: The Best Practices Working Group disseminated recent findings from community forums and discussed aspects to include in a living guidance document. METHODS: Presentations focused on reference materials, data quality review, metabolite identification/annotation and quality assurance. RESULTS: Live polling results and follow-up discussions offered a broad international perspective on QA/QC practices. CONCLUSIONS: Community input gathered from this workshop series is being used to shape the living guidance document, a continually evolving QA/QC best practices resource for metabolomics researchers.


Subject(s)
Mass Spectrometry , Metabolomics , Quality Control , Metabolomics/methods , Metabolomics/standards , Chromatography, Liquid/methods , Chromatography, Liquid/standards , Mass Spectrometry/methods , Humans , Consensus , Liquid Chromatography-Mass Spectrometry
2.
Anal Chim Acta ; 1313: 342759, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-38862207

ABSTRACT

BACKGROUND: Small Extracellular Vesicles (sEVs) are nano-sized vesicles that are present in all biofluids including human milk (HM) playing a crucial role in cell-to-cell communication and the stimulation of the neonatal immune system. Oxylipins, which are bioactive lipids formed from polyunsaturated fatty acids, have gained considerable attention due to their potential role in mitigating disease progression and modulating the inflammatory status of breastfed infants. This study aims at an in-depth characterization of the oxylipin profiles of HM and, for the first time, of HM-derived sEVs (HMEVs) employing an ad-hoc developed and validated ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method. RESULTS: The UPLC-MS/MS method covered a panel of 13 oxylipins for quantitation and 93 oxylipins for semi-quantitation. In 200 µL of HM and HMEV isolates of 15 individuals, 42 out of 106 oxylipins were detected in either HM or HMEVs, with 38 oxylipins being detected in both matrices. Oxylipins presented distinct profiles in HM and HMEVs, suggesting specific mechanisms responsible for the encapsulation of target molecules in HMEVs. Ten and eight oxylipins were quantified with ranges between 0.03 - 73 nM and 0.30 pM-0.07 nM in HM and HMEVs, respectively. The most abundant oxylipins found in HMEVs were docosahexaenoic acid derivatives (17-HDHA and 14-HDHA) with known anti-inflammatory properties, and linoleic acid derivatives (9-10-DiHOME and 12,13-DiHOME) in HM samples. SIGNIFICANCE AND NOVELTY: This is the first time a selective, relative enrichment of anti-inflammatory oxylipins in HMEVs has been described. Future studies will focus on the anti-inflammatory and pro-healing capacity of oxylipins encapsulated in HMEVs, with potential clinical applications in the field of preterm infant care, specifically the prevention of severe intestinal complications including necrotizing enterocolitis.


Subject(s)
Extracellular Vesicles , Milk, Human , Oxylipins , Tandem Mass Spectrometry , Humans , Milk, Human/chemistry , Oxylipins/analysis , Oxylipins/chemistry , Extracellular Vesicles/chemistry , Chromatography, High Pressure Liquid , Female
3.
Eur J Pediatr ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38916739

ABSTRACT

An early prediction of outcomes of neonatal hypoxic-ischemic encephalopathy (NE) is of key importance in reducing neonatal mortality and morbidity. The objectives were (i) to analyze the characteristics of miRNA expression and metabolic patterns of neonates with NE and (ii) to assess their predictive performance for neurodevelopmental outcomes. Plasma samples from moderate/severe NE patients (N = 92) of the HYPOTOP study were collected before, during, and after therapeutic hypothermia (TH) and compared to a control group (healthy term infants). The expression of miRNAs and concentrations of metabolites (hypoxia-related and energy, steroid, and tryptophan metabolisms) were analyzed. Neurodevelopmental outcomes were evaluated at 24 months postnatal age using Bayley Scales of Infant Development, ed. III, BSID-III. Differences in miRNA and metabolic profiles were found between NE vs. control infants, abnormal (i.e., mildly and moderately abnormal and severe) vs. normal, and severe vs. non-severe (i.e., normal and mildly and moderately abnormal) BSID-III. 4-Androstene-3,17-dione, testosterone, betaine, xanthine, and lactate were suitable for BSID-III outcome prediction (receiver operating characteristic areas under the curve (AUCs) ≥ 0.6), as well as 68 miRNAs (AUCs of 0.5-0.9). Significant partial correlations of xanthine and betaine levels and the expression of several miRNAs with BSID-III sub-scales were found. Conclusion: We have identified metabolites/miRNAs that might be useful to support the prediction of middle-term neurodevelopmental outcomes of NE. What is known and what is new: • The early prediction of outcomes of neonatal hypoxic-ischemic encephalopathy (NE) is of key importance in reducing neonatal mortality and morbidity. • Alterations of the metabolome and miRNAs had been observed in NE. • We performed miRNA sequencing and quantified selected metabolites (i.e., lactate, pyruvate, ketone bodies, Krebs cycle intermediates, tryptophan pathway, hypoxia-related metabolites, and steroids) by GC- and LC-MS. • Specific miRNAs and metabolites that allow prediction of middle-term neurodevelopmental outcomes of newborns with NE undergoing hypothermia treatment were identified.

4.
Microorganisms ; 12(5)2024 May 03.
Article in English | MEDLINE | ID: mdl-38792760

ABSTRACT

The role of Bifidobacterium species and microbial metabolites such as short-chain fatty acids (SCFAs) and human milk oligosaccharides in controlling intestinal inflammation and the pathogenesis of obesity and type 1 diabetes (T1D) has been largely studied in recent years. This paper discusses the discovery of signature biomarkers for obesity and T1D based on data from a novel test for profiling several Bifidobacterium species, combined with metabolomic analysis. Through the NUTRISHIELD clinical study, a total of 98 children were recruited: 40 healthy controls, 40 type 1 diabetics, and 18 obese children. Bifidobacterium profiles were assessed in stool samples through an innovative test allowing high taxonomic resolution and precise quantification, while SCFAs and branched amino acids were measured in urine samples through gas chromatography-mass spectrometry (GC-MS). KIDMED questionnaires were used to evaluate the children's dietary habits and correlate them with the Bifidobacterium and metabolomic profiles. We found that B. longum subs. infantis and B. breve were higher in individuals with obesity, while B. bifidum and B. longum subs. longum were lower compared to healthy individuals. In individuals with T1D, alterations were found at the metabolic level, with an overall increase in the level of the most measured metabolites. The high taxonomic resolution of the Bifidobacterium test used meant strong correlations between the concentrations of valine and isoleucine, and the relative abundance of some Bifidobacterium species such as B. longum subs. infantis, B. breve, and B. bifidum could be observed.

5.
Metabolomics ; 20(2): 20, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38345679

ABSTRACT

BACKGROUND: Quality assurance (QA) and quality control (QC) practices are key tenets that facilitate study and data quality across all applications of untargeted metabolomics. These important practices will strengthen this field and accelerate its success. The Best Practices Working Group (WG) within the Metabolomics Quality Assurance and Quality Control Consortium (mQACC) focuses on community use of QA/QC practices and protocols and aims to identify, catalogue, harmonize, and disseminate current best practices in untargeted metabolomics through community-driven activities. AIM OF REVIEW: A present goal of the Best Practices WG is to develop a working strategy, or roadmap, that guides the actions of practitioners and progress in the field. The framework in which mQACC operates promotes the harmonization and dissemination of current best QA/QC practice guidance and encourages widespread adoption of these essential QA/QC activities for liquid chromatography-mass spectrometry. KEY SCIENTIFIC CONCEPTS OF REVIEW: Community engagement and QA/QC information gathering activities have been occurring through conference workshops, virtual and in-person interactive forum discussions, and community surveys. Seven principal QC stages prioritized by internal discussions of the Best Practices WG have received participant input, feedback and discussion. We outline these stages, each involving a multitude of activities, as the framework for identifying QA/QC best practices. The ultimate planned product of these endeavors is a "living guidance" document of current QA/QC best practices for untargeted metabolomics that will grow and change with the evolution of the field.


Subject(s)
Data Accuracy , Metabolomics , Humans , Metabolomics/methods , Quality Control , Surveys and Questionnaires
6.
Antioxid Redox Signal ; 40(7-9): 453-459, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37603496

ABSTRACT

Fetal hemoglobin (HbF) has a higher affinity to oxygen than adult hemoglobin, allowing for a slower oxygen transfer to peripheral tissue, creating a microenvironment conducive to adequate fetal development in utero. However, most preterm infants receive packed red blood cell transfusions from adult donors leading to a drastic nonphysiological descent of circulating HbF. We hypothesized that this drop could enhance oxygen delivery to peripheral tissues generating a hyperoxic pro-oxidant environment. To investigate this, we assessed differences in oxidative stress biomarkers determined in urine samples in a cohort of 56 preterm infants born <32 weeks' gestation. Median oxidative stress biomarkers were compared between patients with circulating HbF above or below median HbF levels using Wilcoxon rank sum test. Oxidative stress biomarkers were significantly higher in the group of patients with lower levels of HbF. This study provides the initial evidence indicating elevated levels of oxidative stress biomarkers in preterm neonates with lower HbF levels. Based on the results, we hypothesize that HbF may contribute to preventing free radical-associated conditions during the newborn period. Antioxid. Redox Signal. 40, 453-459.


Subject(s)
Fetal Hemoglobin , Infant, Premature , Adult , Humans , Infant, Newborn , Fetal Hemoglobin/analysis , Fetal Hemoglobin/metabolism , Oxidative Stress , Oxygen , Biomarkers
7.
Anal Chem ; 95(51): 18645-18654, 2023 12 26.
Article in English | MEDLINE | ID: mdl-38055671

ABSTRACT

Untargeted metabolomics is an analytical approach with numerous applications serving as an effective metabolic phenotyping platform to characterize small molecules within a biological system. Data quality can be challenging to evaluate and demonstrate in metabolomics experiments. This has driven the use of pooled quality control (QC) samples for monitoring and, if necessary, correcting for analytical variance introduced during sample preparation and data acquisition stages. Described herein is a scoping literature review detailing the use of pooled QC samples in published untargeted liquid chromatography-mass spectrometry (LC-MS) based metabolomics studies. A literature query was performed, the list of papers was filtered, and suitable articles were randomly sampled. In total, 109 papers were each reviewed by at least five reviewers, answering predefined questions surrounding the use of pooled quality control samples. The results of the review indicate that use of pooled QC samples has been relatively widely adopted by the metabolomics community and that it is used at a similar frequency across biological taxa and sample types in both small- and large-scale studies. However, while many studies generated and analyzed pooled QC samples, relatively few reported the use of pooled QC samples to improve data quality. This demonstrates a clear opportunity for the field to more frequently utilize pooled QC samples for quality reporting, feature filtering, analytical drift correction, and metabolite annotation. Additionally, our survey approach enabled us to assess the ambiguity in the reporting of the methods used to describe the generation and use of pooled QC samples. This analysis indicates that many details of the QC framework are missing or unclear, limiting the reader's ability to determine which QC steps have been taken. Collectively, these results capture the current state of pooled QC sample usage and highlight existing strengths and deficiencies as they are applied in untargeted LC-MS metabolomics.


Subject(s)
Liquid Chromatography-Mass Spectrometry , Tandem Mass Spectrometry , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Metabolomics/methods , Quality Control
8.
Front Immunol ; 14: 1293737, 2023.
Article in English | MEDLINE | ID: mdl-38054009

ABSTRACT

Introduction: Premature infants (PIs) are at risk of suffering necrotizing enterocolitis (NEC), and infants consuming human milk (HM) show a lower incidence than infants receiving formula. The composition of HM has been studied in depth, but the lipid content of HM-derived small extracellular vesicles (HM sEVs) remains unexplored. Identifying these molecules and their biological effects has potential for the treatment of intestinal disorders in PIs and could contribute to the development of HM-based fortified formulas. Methods: We isolated HM sEVs from HM samples and analyzed their oxylipin content using liquid chromatography coupled to mass spectrometry, which revealed the presence of anti-inflammatory oxylipins. We then examined the efficacy of a mixture of these oxylipins in combating inflammation and fibrosis, in vitro and in a murine model of inflammatory bowel disease (IBD). Results: HM-related sEVs contained higher concentrations of oxylipins derived from docosahexaenoic acid, an omega-3 fatty acid. Three anti-inflammatory oxylipins, 14-HDHA, 17-HDHA, and 19,20-DiHDPA (ω3 OXLP), demonstrated similar efficacy to HM sEVs in preventing cell injury, inducing re-epithelialization, mitigating fibrosis, and modulating immune responses. Both ω3 OXLP and HM sEVs effectively reduced inflammation in IBD-model mice, preventing colon shortening, infiltration of inflammatory cells and tissue fibrosis. Discussion: Incorporating this unique cocktail of oxylipins into fortified milk formulas might reduce the risk of NEC in PIs and also provide immunological and neurodevelopmental support.


Subject(s)
Fatty Acids, Omega-3 , Inflammatory Bowel Diseases , Infant , Humans , Infant, Newborn , Animals , Mice , Milk, Human , Oxylipins , Inflammation , Anti-Inflammatory Agents/pharmacology , Fibrosis
9.
Metabolomics ; 19(11): 93, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37940740

ABSTRACT

INTRODUCTION: The Metabolomics Quality Assurance and Quality Control Consortium (mQACC) organized a workshop during the Metabolomics 2022 conference. OBJECTIVES: The goal of the workshop was to disseminate recent findings from mQACC community-engagement efforts and to solicit feedback about a living guidance document of QA/QC best practices for untargeted LC-MS metabolomics. METHODS: Four QC-related topics were presented. RESULTS: During the discussion, participants expressed the need for detailed guidance on a broad range of QA/QC-related topics accompanied by use-cases. CONCLUSIONS: Ongoing efforts will continue to identify, catalog, harmonize, and disseminate QA/QC best practices, including outreach activities, to establish and continually update QA/QC guidelines.


Subject(s)
Metabolomics , Tandem Mass Spectrometry , Humans , Chromatography, Liquid , Quality Control
10.
Antioxidants (Basel) ; 12(11)2023 Nov 11.
Article in English | MEDLINE | ID: mdl-38001844

ABSTRACT

The cerebellum is responsible for complex motor functions, like maintaining balance and stance, coordination of voluntary movements, motor learning, and cognitive tasks. During aging, most of these functions deteriorate, which results in falls and accidents. The aim of this work was to elucidate the effect of a standardized pomegranate extract during four months of supplementation in elderly mice to prevent frailty and improve the oxidative state. Male C57Bl/6J eighteen-month-old mice were evaluated for frailty using the "Valencia Score" at pre-supplementation and post-supplementation periods. We analyzed lipid peroxidation in the cerebellum and brain cortex and the glutathione redox status in peripheral blood. In addition, a set of aging-related genes in cerebellum and apoptosis biomarkers was measured via real-time polymerase chain reaction (RT-PCR). Our results showed that pomegranate extract supplementation improved the motor skills of C57Bl/6J aged mice in motor coordination, neuromuscular function, and monthly weight loss, but no changes in grip strength and endurance were found. Furthermore, pomegranate extract reversed the increase in malondialdehyde due to aging in the cerebellum and increased the reduced glutathione/oxidized glutathione (GSH/GSSG) ratio in the blood. Finally, aging and apoptosis biomarkers improved in aged mice supplemented with pomegranate extract in the cerebellum but not in the cerebral cortex.

11.
ACS Meas Sci Au ; 3(5): 301-314, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37868358

ABSTRACT

Despite the ubiquitous absorption of mid-infrared (IR) radiation by virtually all molecules that belong to the major biomolecules groups (proteins, lipids, carbohydrates, nucleic acids), the application of conventional IR microscopy to the life sciences remained somewhat limited, due to the restrictions on spatial resolution imposed by the diffraction limit (in the order of several micrometers). This issue is addressed by AFM-IR, a scanning probe-based technique that allows for chemical analysis at the nanoscale with resolutions down to 10 nm and thus has the potential to contribute to the investigation of nano and microscale biological processes. In this perspective, in addition to a concise description of the working principles and operating modes of AFM-IR, we present and evaluate the latest key applications of AFM-IR to the life sciences, summarizing what the technique has to offer to this field. Furthermore, we discuss the most relevant current limitations and point out potential future developments and areas for further application for fruitful interdisciplinary collaboration.

12.
Front Pediatr ; 11: 1269797, 2023.
Article in English | MEDLINE | ID: mdl-37900679

ABSTRACT

Background: Currently, the treatment of anemia in preterm infants is based on packed red blood cell (RBC) transfusions from adult donors. Oxygen (O2) is mainly transported to the tissues bound to hemoglobin (Hb). In extremely low gestational age neonates (ELGANs), fetal hemoglobin (HbF), which has a higher affinity for O2, represents up to 95% of circulating hemoglobin. During the first month of life, the majority of ELGANs will require an adult-donor RBC transfusion causing HbF levels to rapidly drop. HbA releases 50% more oxygen in peripheral tissues than HbF. Increased release of O2 in the retina is one of the main factors related to the development of retinopathy of prematurity (ROP). Collecting umbilical cord blood and using autologous umbilical cord whole blood (UCB) transfusions would contribute to maintaining physiological HbF concentrations in newborns and avoid oxygen-in-excess derived damage. Methods: This is a randomized, double-blinded, multicenter clinical trial. ELGANs ≤28 weeks of gestational age will be randomized 1:1 to receive an autologous umbilical cord blood transfusion (intervention arm) or standard transfusion of packed RBC from an adult donor (control arm) to assess ROP development. Assuming a 50% reduction in ROP incidence, 134 patients (67 per group) will be recruited. When blood transfusion is indicated, the Blook Bank will supply UCB or RCB according to the patient's group. The primary endpoint is the incidence of any ROP. Secondary endpoints are assessessment of treatment safety, results of biomarkers related to ROP and its chronology, and urine oxidative stress markers. In addition, the cellular composition of umbilical cord blood and its relationship with prematurity-related pathologies will be analyzed. All patients will be followed-up to 24 months of corrected age to evaluate their neurodevelopment. Discussion: ROP is a major cause of irreversible blindness in preterm newborns. Transfusions with adult donor blood can lead to complications, including ROP. UCB transfusions offer advantages by maintaining physiological HbF levels and potentially optimizing postnatal development. Moreover, autologous UCB transfusion could reduce risks associated with heterologous blood products, although volume collection remains challenging. UCB contains growth factors and progenitor cells that may impact ROP.

13.
Analyst ; 148(17): 3986-3991, 2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37539806

ABSTRACT

A fast and accurate assessment of liver steatosis is crucial during liver transplantation surgery as it can negatively impact its success. Recent research has shown that near-infrared (NIR) and attenuated total reflectance-Fourier transform mid-infrared (ATR-FTIR) spectroscopy could be used as real-time quantitative tools to assess steatosis during abdominal surgery. Here, in the frame of a clinical study, we explore the performance of NIR and ATR-FTIR spectroscopy for the direct assessment of steatosis in liver tissues. Results show that both NIR and ATR-FTIR spectroscopy are able to quantify the % of steatosis with cross-validation errors of 1.4 and 1.6%, respectively. Furthermore, the two portable instruments used both provided results within seconds and can be placed inside an operating room evidencing the potential of IR spectroscopy for initial characterization of grafts in liver transplantation surgery. We also evaluated the complementarity of the spectral ranges through correlation spectroscopy.


Subject(s)
Fatty Liver , Organ Transplantation , Humans , Spectroscopy, Fourier Transform Infrared/methods , Spectroscopy, Near-Infrared/methods
15.
Anal Bioanal Chem ; 415(20): 4961-4971, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37338567

ABSTRACT

Bile acids (BAs) are a complex class of metabolites that have been described as specific biomarkers of gut microbiota activity. The development of analytical methods allowing the quantification of an ample spectrum of BAs in different biological matrices is needed to enable a wider implementation of BAs as complementary measures in studies investigating the functional role of the gut microbiota. This work presents results from the validation of a targeted ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method for the determination of 28 BAs and six sulfated BAs, covering primary, secondary, and conjugated BAs. The analysis of 73 urine and 20 feces samples was used to test the applicability of the method. Concentrations of BAs in human urine and murine feces were reported, ranging from 0.5 to 50 nmol/g creatinine and from 0.012 to 332 nmol/g, respectively. Seventy-nine percent of BAs present in human urine samples corresponded to secondary conjugated BAs, while 69% of BAs present in murine feces corresponded to primary conjugated BAs. Glycocholic acid sulfate (GCA-S) was the most abundant BA in human urine samples, while taurolithocholic acid was the lowest concentrated compound detected. In murine feces, the most abundant BAs were α-murocholic, deoxycholic, dehydrocholic, and ß-murocholic acids, while GCA-S was the lowest concentrated BA. The presented method is a non-invasive approach for the simultaneous assessment of BAs and sulfated BAs in urine and feces samples, and the results will serve as a knowledge base for future translational studies focusing on the role of the microbiota in health.


Subject(s)
Bile Acids and Salts , Tandem Mass Spectrometry , Humans , Mice , Animals , Bile Acids and Salts/analysis , Tandem Mass Spectrometry/methods , Sulfates/analysis , Chromatography, High Pressure Liquid/methods , Feces/chemistry
16.
Analyst ; 148(13): 3097-3106, 2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37313751

ABSTRACT

The assessment of liver steatosis is crucial in both hepatology and liver transplantation (LT) surgery. Steatosis can negatively impact the success of LT. Steatosis is a factor for excluding donated organs for LT, but the increasing demand for transplantable organs has led to the use of organs from marginal donors. The current standard for evaluating steatosis is a semi-quantitative grading based on the visual examination of a hematoxylin and eosin (H&E)-stained liver biopsy, but this method is time-consuming, subjective, and lacks reproducibility. Recent research has shown that infrared (IR) spectroscopy could be used as a real-time quantitative tool to assess steatosis during abdominal surgery. However, the development of IR-based methods has been hindered by the lack of appropriate quantitative reference values. In this study, we developed and validated digital image analysis methods for the quantitation of steatosis in H&E-stained liver sections using univariate and multivariate strategies including linear discriminant analysis (LDA), quadratic DA, logistic regression, partial least squares-DA (PLS-DA), and support vector machines. The analysis of 37 tissue samples with varying grades of steatosis demonstrates that digital image analysis provides accurate and reproducible reference values that improve the performance of IR spectroscopic models for steatosis quantification. A PLS model in the 1810-1052 cm-1 region using first derivative ATR-FTIR spectra provided RMSECV = 0.99%. The gained improvement in accuracy critically enhances the applicability of Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) to support an objective graft evaluation at the operation room, which might be especially relevant in cases of marginal liver donors to avoid unnecessary graft explantation.


Subject(s)
Fatty Liver , Humans , Spectroscopy, Fourier Transform Infrared/methods , Reproducibility of Results , Spectrophotometry, Infrared , Fatty Liver/diagnostic imaging , Fatty Liver/pathology , Discriminant Analysis , Least-Squares Analysis
17.
Pediatr Res ; 94(4): 1444-1450, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37188801

ABSTRACT

BACKGROUND: Intermittent hypoxemia (IH) events are common in preterm neonates and are associated with adverse outcomes. Animal IH models can induce oxidative stress. We hypothesized that an association exists between IH and elevated peroxidation products in preterm neonates. METHODS: Time in hypoxemia, frequency of IH, and duration of IH events were assessed from a prospective cohort of 170 neonates (<31 weeks gestation). Urine was collected at 1 week and 1 month. Samples were analyzed for lipid, protein, and DNA oxidation biomarkers. RESULTS: At 1 week, adjusted multiple quantile regression showed positive associations between several hypoxemia parameters with various individual quantiles of isofurans, neurofurans, dihomo-isoprostanes, dihomo-isofurans, and ortho-tyrosine and a negative correlation with dihomo-isoprostanes and meta-tyrosine. At 1 month, positive associations were found between several hypoxemia parameters with quantiles of isoprostanes, dihomo-isoprostanes and dihomo-isofurans and a negative correlation with isoprostanes, isofurans, neuroprostanes, and meta-tyrosine. CONCLUSIONS: Preterm neonates experience oxidative damage to lipids, proteins, and DNA that can be analyzed from urine samples. Our single-center data suggest that specific markers of oxidative stress may be related to IH exposure. Future studies are needed to better understand mechanisms and relationships to morbidities of prematurity. IMPACT: Hypoxemia events are frequent in preterm infants and are associated with poor outcomes. The mechanisms by which hypoxemia events result in adverse neural and respiratory outcomes may include oxidative stress to lipids, proteins, and DNA. This study begins to explore associations between hypoxemia parameters and products of oxidative stress in preterm infants. Oxidative stress biomarkers may assist in identifying high-risk neonates.


Subject(s)
Infant, Premature , Isoprostanes , Infant , Animals , Humans , Infant, Newborn , Prospective Studies , Hypoxia , Oxidative Stress , Biomarkers/urine , DNA
18.
Pediatr Res ; 94(4): 1436-1443, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37188799

ABSTRACT

BACKGROUND: Hypoxemia is a physiological manifestation of immature respiratory control in preterm neonates, which is likely impacted by neurotransmitter imbalances. We investigated relationships between plasma levels of the neurotransmitter serotonin (5-HT), metabolites of tryptophan (TRP), and parameters of hypoxemia in preterm neonates. METHODS: TRP, 5-HT, 5-hydroxyindoleacetic acid (5-HIAA), and kynurenic acid (KA) were analyzed in platelet-poor plasma at ~1 week and ~1 month of life from a prospective cohort of 168 preterm neonates <31 weeks gestational age (GA). Frequency of intermittent hypoxemia (IH) events and percent time hypoxemic (<80%) were analyzed in a 6 h window after the blood draw. RESULTS: At 1 week, infants with detectable plasma 5-HT had fewer IH events (OR (95% CI) = 0.52 (0.29, 0.31)) and less percent time <80% (OR (95% CI) = 0.54 (0.31, 0.95)) compared to infants with undetectable 5-HT. A similar relationship occurred at 1 month. At 1 week, infants with higher KA showed greater percent time <80% (OR (95% CI) = 1.90 (1.03, 3.50)). TRP, 5-HIAA or KA were not associated with IH frequency at either postnatal age. IH frequency and percent time <80% were positively associated with GA < 29 weeks. CONCLUSIONS: Circulating neuromodulators 5-HT and KA might represent biomarkers of immature respiratory control contributing to hypoxemia in preterm neonates. IMPACT: Hypoxemia events are frequent in preterm infants and are associated with poor outcomes. Mechanisms driving hypoxemia such as immature respiratory control may include central and peripheral imbalances in modulatory neurotransmitters. This study found associations between the plasma neuromodulators serotonin and kynurenic acid and parameters of hypoxemia in preterm neonates. Imbalances in plasma biomarkers affecting respiratory control may help identify neonates at risk of short- and long-term adverse outcomes.


Subject(s)
Infant, Premature , Serotonin , Infant , Humans , Infant, Newborn , Serotonin/metabolism , Prospective Studies , Hydroxyindoleacetic Acid , Kynurenic Acid , Hypoxia , Tryptophan , Biomarkers , Neurotransmitter Agents
19.
Front Pediatr ; 11: 1130179, 2023.
Article in English | MEDLINE | ID: mdl-37144153

ABSTRACT

Background: Human milk (HM) is the ideal source of nutrients for infants. Its composition is highly variable according to the infant's needs. When not enough own mother's milk (OMM) is available, the administration of pasteurized donor human milk (DHM) is considered a suitable alternative for preterm infants. This study protocol describes the NUTRISHIELD clinical study. The main objective of this study is to compare the % weight gain/month in preterm and term infants exclusively receiving either OMM or DHM. Other secondary aims comprise the evaluation of the influence of diet, lifestyle habits, psychological stress, and pasteurization on the milk composition, and how it modulates infant's growth, health, and development. Methods and design: NUTRISHIELD is a prospective mother-infant birth cohort in the Spanish-Mediterranean area including three groups: preterm infants <32 weeks of gestation (i) exclusively receiving (i.e., >80% of total intake) OMM, and (ii) exclusively receiving DHM, and (iii) term infants exclusively receiving OMM, as well as their mothers. Biological samples and nutritional, clinical, and anthropometric characteristics are collected at six time points covering the period from birth and until six months of infant's age. The genotype, metabolome, and microbiota as well as the HM composition are characterized. Portable sensor prototypes for the analysis of HM and urine are benchmarked. Additionally, maternal psychosocial status is measured at the beginning of the study and at month six. Mother-infant postpartum bonding and parental stress are also examined. At six months, infant neurodevelopment scales are applied. Mother's concerns and attitudes to breastfeeding are registered through a specific questionnaire. Discussion: NUTRISHIELD provides an in-depth longitudinal study of the mother-infant-microbiota triad combining multiple biological matrices, newly developed analytical methods, and ad-hoc designed sensor prototypes with a wide range of clinical outcome measures. Data obtained from this study will be used to train a machine-learning algorithm for providing dietary advice to lactating mothers and will be implemented in a user-friendly platform based on a combination of user-provided information and biomarker analysis. A better understanding of the factors affecting milk's composition, together with the health implications for infants plays an important role in developing improved strategies of nutraceutical management in infant care. Clinical trial registration: https://register.clinicaltrials.gov, identifier: NCT05646940.

20.
Nutrients ; 15(8)2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37111113

ABSTRACT

Accurate dietary assessment in nutritional research is a huge challenge, but essential. Due to the subjective nature of self-reporting methods, the development of analytical methods for food intake and microbiota biomarkers determination is needed. This work presents an ultra-high performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS) method for the quantification and semi quantification of 20 and 201 food intake biomarkers (BFIs), respectively, as well as 7 microbiota biomarkers applied to 208 urine samples from lactating mothers (M) (N = 59). Dietary intake was assessed through a 24 h dietary recall (R24h). BFI analysis identified three distinct clusters among samples: samples from clusters 1 and 3 presented higher concentrations of most biomarkers than those from cluster 2, with dairy products and milk biomarkers being more concentrated in cluster 1, and seeds, garlic and onion in cluster 3. Significant correlations were observed between three BFIs (fruits, meat, and fish) and R24h data (r > 0.2, p-values < 0.01, Spearman correlation). Microbiota activity biomarkers were simultaneously evaluated and the subgroup patterns detected were compared to clusters from dietary assessment. These results evidence the feasibility, usefulness, and complementary nature of the determination of BFIs, R24h, and microbiota activity biomarkers in observational nutrition cohort studies.


Subject(s)
Nutrition Assessment , Tandem Mass Spectrometry , Animals , Female , Biomarkers/urine , Chromatography, Liquid , Lactation , Milk , Humans
SELECTION OF CITATIONS
SEARCH DETAIL