Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Am Nat ; 200(3): 383-400, 2022 09.
Article in English | MEDLINE | ID: mdl-35977786

ABSTRACT

AbstractThe remarkable evolutionary success of placental mammals has been partly attributed to their reproductive strategy of prolonged gestation and birthing of relatively precocial, quickly weaned neonates. Although this strategy was conventionally considered derived relative to that of marsupials with highly altricial neonates and long lactation periods, mounting evidence has challenged this view. Until now the fossil record has been relatively silent on this debate, but here we find that proportions of different bone tissue microstructures in the femoral cortices of small extant marsupials and placentals correlate with length of lactation period, allowing us to apply this histological correlate of reproductive strategies to Late Cretaceous and Paleocene members of Multituberculata, an extinct mammalian clade that is phylogenetically stemward of Theria. Multituberculate bone histology closely resembles that of placentals, suggesting that they had similar life history strategies. A stem-therian clade exhibiting evidence of placental-like life histories supports the hypothesis that intense maternal-fetal contact characteristic of placentals is ancestral for therians. Alternatively, multituberculates and placentals may have independently evolved prolonged gestation and abbreviated lactation periods. Our results challenge the hypothesis that the rise of placental mammals was driven by unique life history innovations and shed new light on early mammalian diversification.


Subject(s)
Life History Traits , Marsupialia , Animals , Biological Evolution , Female , Mammals , Phylogeny , Placenta , Pregnancy
2.
PLoS One ; 16(11): e0259369, 2021.
Article in English | MEDLINE | ID: mdl-34739492

ABSTRACT

Lystrosaurus was one of the few tetrapods to survive the Permo-Triassic mass extinction, the most profound biotic crisis in Earth's history. The wide paleolatitudinal range and high abundance of Lystrosaurus during the Early Triassic provide a unique opportunity to investigate changes in growth dynamics and longevity following the mass extinction, yet most studies have focused only on species that lived in the southern hemisphere. Here, we present the long bone histology from twenty Lystrosaurus skeletal elements spanning a range of sizes that were collected in the Jiucaiyuan Formation of northwestern China. In addition, we compare the average body size of northern and southern Pangean Triassic-aged species and conduct cranial geometric morphometric analyses of southern and northern taxa to begin investigating whether specimens from China are likely to be taxonomically distinct from South African specimens. We demonstrate that Lystrosaurus from China have larger average body sizes than their southern Pangean relatives and that their cranial morphologies are distinctive. The osteohistological examination revealed sustained, rapid osteogenesis punctuated by growth marks in some, but not all, immature individuals from China. We find that the osteohistology of Chinese Lystrosaurus shares a similar growth pattern with South African species that show sustained growth until death. However, bone growth arrests more frequently in the Chinese sample. Nevertheless, none of the long bones sampled here indicate that maximum or asymptotic size was reached, suggesting that the maximum size of Lystrosaurus from the Jiucaiyuan Formation remains unknown.


Subject(s)
Body Size/physiology , Dinosaurs/anatomy & histology , Fossils/anatomy & histology , Animals , China , Extinction, Biological , Paleontology/methods , Skull/anatomy & histology
3.
J Anat ; 235(1): 151-166, 2019 07.
Article in English | MEDLINE | ID: mdl-31070781

ABSTRACT

Thickened, pachyostotic skulls are best known in pachycephalosaur dinosaurs, but evolved convergently in Permian burnetiamorphs as well as in some other stem-mammal groups and Triassic archosauromorphs. Until now, only pachycephalosaur domes have been histologically sampled to reveal patterns of bone tissue microstructure and growth. Using computed tomography and osteohistology, we serially thin-sectioned one of the smallest burnetiamorph skull caps ever recovered (estimated skull length = 10 cm), as well as an individual nearly twice as large, and here report the first cranial histological data from this clade. We recognize four highly vascularized histological zones visible in coronal thin-sections, only one of which shares morphological similarities with the tripartite zonation previously reported in pachycephalosaur domes. Zone A forms the endocranial region of the skull cap and records disorganized primary osteons in a fibrolamellar complex. Zone B preserves a border of compact, avascular layers of parallel-fibered bone surrounding an interior of partially remodeled vascular canals. Interestingly, the outline of Zone B resembles the shape of an incipient skull roof. Zone C forms the thickest portion of the skull cap and is composed of fast-growing woven bone with minimal osteonal development. The superficial Zone D has a matrix of predominantly woven bone with narrower primary vascular canals than in deeper regions of the skull caps. Unlike in pachycephalosaurs, where primary vascular porosity is thought to decrease through ontogeny, both burnetiamorph skull caps preserve a thick Zone C of highly vascularized tissue. Additionally, the remnants of sutures are visible as radial struts that taper superficially, leaving no trace on the surface of the skull. Even in the smallest individual, the sutures are closed ectocranially, which is unusual, given that some large, presumably adult pachycephalosaur domes preserve open sutural gaps. Although pachycephalosaur and burnetiamorph skull domes are superficially similar, histological analysis reveals differences in their vascularity and construction that imply multiple evolutionary pathways to form an elaborate pachyostotic dome.


Subject(s)
Dinosaurs/anatomy & histology , Skull/anatomy & histology , Animals , Biological Evolution , Bone and Bones/anatomy & histology , Cranial Sutures/anatomy & histology , Dinosaurs/classification , Fossils , Mammals/anatomy & histology , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL