Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 5(25): 15129-15135, 2020 Jun 30.
Article in English | MEDLINE | ID: mdl-32637785

ABSTRACT

In this work, we aim to study zinc oxide (ZnO)-based functional materials over cotton fabrics and their effects after gamma ray exposure of 9 kGy. We found that the binding of the nanoparticles with cotton fabrics can be enhanced after irradiation. This could be due to the oxygen deficiency or defects created in the interface between ZnO and cotton fabrics after irradiation. Near-edge X-ray absorption fine structure and X-ray photoelectron spectroscopy (XPS) were used to detect the oxygen inadequacies generated in the interior and at the surface of the ZnO nanoparticles after gamma ray exposure. XPS results showed that the binding energy of Zn shifts by 2 eV at 1.5 kGy and by 4 eV at 9 kGy. This huge shift of about 4 eV is completely different from other works due to the reaction that takes place on the interface between ZnO nanostructures and cotton fabrics after gamma ray irradiation. Overall, this work suggests that after gamma ray irradiation, there is an enhanced level of binding between the coated functional nanoparticles and cotton fabrics, which can be advantageous for the textile industries.

2.
Nanoscale ; 12(24): 12970-12984, 2020 Jun 28.
Article in English | MEDLINE | ID: mdl-32525500

ABSTRACT

Due to the rapid growth of drug-resistant bacterial infections, there is an urgent need to develop innovative antimicrobial strategies to conquer the bacterial antibiotic resistance problems. Although a few nanomaterial-based antimicrobial strategies have been developed, the sensitized formation of cytotoxic reactive chlorine species (RCS), including chlorine gas and chlorine free radicals, by photo-activatable plasmonic nanoparticles for evading drug-resistant bacterial infections has not yet been reported. To address this challenge, herein, we report the synthesis of an unprecedented plasmonic core-shell Ag@AgCl nanocrystal through an in situ oxidation route for the photo-induced generation of highly cytotoxic RCS. We present the detailed in vitro and in vivo investigations of visible light activated Ag@AgCl nanostructure-mediated evasion of drug-resistant bacteria. In particular, the in vivo results demonstrate the complete reepithelialization of the methicillin-resistant Staphylococcus aureus (MRSA) infected wounds on skin upon phototherapeutic treatment mediated Ag@AgCl NCs. To the best of our knowledge, this is the first unique example of using Ag@AgCl NCs as an external nanomedicine for photo-induced generation of RCS to mediate effective killing of both Gram-positive and Gram-negative drug resistance bacteria and healing of the subcutaneous abscesses in an in vivo mouse model.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Pharmaceutical Preparations , Animals , Anti-Bacterial Agents/pharmacology , Bacteria , Chlorine , Mice , Nanomedicine , Silver
SELECTION OF CITATIONS
SEARCH DETAIL
...