Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
JMIR Public Health Surveill ; 10: e50653, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38861711

ABSTRACT

Staff at public health departments have few training materials to learn how to design and fine-tune systems to quickly detect acute, localized, community-acquired outbreaks of infectious diseases. Since 2014, the Bureau of Communicable Disease at the New York City Department of Health and Mental Hygiene has analyzed reportable communicable diseases daily using SaTScan. SaTScan is a free software that analyzes data using scan statistics, which can detect increasing disease activity without a priori specification of temporal period, geographic location, or size. The Bureau of Communicable Disease's systems have quickly detected outbreaks of salmonellosis, legionellosis, shigellosis, and COVID-19. This tutorial details system design considerations, including geographic and temporal data aggregation, study period length, inclusion criteria, whether to account for population size, network location file setup to account for natural boundaries, probability model (eg, space-time permutation), day-of-week effects, minimum and maximum spatial and temporal cluster sizes, secondary cluster reporting criteria, signaling criteria, and distinguishing new clusters versus ongoing clusters with additional events. We illustrate how to support health equity by minimizing analytic exclusions of patients with reportable diseases (eg, persons experiencing homelessness who are unsheltered) and accounting for purely spatial patterns, such as adjusting nonparametrically for areas with lower access to care and testing for reportable diseases. We describe how to fine-tune the system when the detected clusters are too large to be of interest or when signals of clusters are delayed, missed, too numerous, or false. We demonstrate low-code techniques for automating analyses and interpreting results through built-in features on the user interface (eg, patient line lists, temporal graphs, and dynamic maps), which became newly available with the July 2022 release of SaTScan version 10.1. This tutorial is the first comprehensive resource for health department staff to design and maintain a reportable communicable disease outbreak detection system using SaTScan to catalyze field investigations as well as develop intuition for interpreting results and fine-tuning the system. While our practical experience is limited to monitoring certain reportable diseases in a dense, urban area, we believe that most recommendations are generalizable to other jurisdictions in the United States and internationally. Additional analytic technical support for detecting outbreaks would benefit state, tribal, local, and territorial public health departments and the populations they serve.


Subject(s)
Disease Outbreaks , Spatio-Temporal Analysis , Humans , Disease Outbreaks/prevention & control , New York City/epidemiology , Communicable Diseases/epidemiology , Communicable Diseases/diagnosis , Software , Prospective Studies , COVID-19/epidemiology , Cluster Analysis
2.
NEJM Evid ; 3(5): EVIDoa2300342, 2024 May.
Article in English | MEDLINE | ID: mdl-38815164

ABSTRACT

BACKGROUND: Detection and containment of hospital outbreaks currently depend on variable and personnel-intensive surveillance methods. Whether automated statistical surveillance for outbreaks of health care-associated pathogens allows earlier containment efforts that would reduce the size of outbreaks is unknown. METHODS: We conducted a cluster-randomized trial in 82 community hospitals within a larger health care system. All hospitals followed an outbreak response protocol when outbreaks were detected by their infection prevention programs. Half of the hospitals additionally used statistical surveillance of microbiology data, which alerted infection prevention programs to outbreaks. Statistical surveillance was also applied to microbiology data from control hospitals without alerting their infection prevention programs. The primary outcome was the number of additional cases occurring after outbreak detection. Analyses assessed differences between the intervention period (July 2019 to January 2022) versus baseline period (February 2017 to January 2019) between randomized groups. A post hoc analysis separately assessed pre-coronavirus disease 2019 (Covid-19) and Covid-19 pandemic intervention periods. RESULTS: Real-time alerts did not significantly reduce the number of additional outbreak cases (intervention period versus baseline: statistical surveillance relative rate [RR]=1.41, control RR=1.81; difference-in-differences, 0.78; 95% confidence interval [CI], 0.40 to 1.52; P=0.46). Comparing only the prepandemic intervention with baseline periods, the statistical outbreak surveillance group was associated with a 64.1% reduction in additional cases (statistical surveillance RR=0.78, control RR=2.19; difference-in-differences, 0.36; 95% CI, 0.13 to 0.99). There was no similarly observed association between the pandemic versus baseline periods (statistical surveillance RR=1.56, control RR=1.66; difference-in-differences, 0.94; 95% CI, 0.46 to 1.92). CONCLUSIONS: Automated detection of hospital outbreaks using statistical surveillance did not reduce overall outbreak size in the context of an ongoing pandemic. (Funded by the Centers for Disease Control and Prevention; ClinicalTrials.gov number, NCT04053075. Support for HCA Healthcare's participation in the study was provided in kind by HCA.).


Subject(s)
COVID-19 , Cross Infection , Disease Outbreaks , Humans , Disease Outbreaks/prevention & control , COVID-19/epidemiology , COVID-19/prevention & control , Cross Infection/epidemiology , Cross Infection/prevention & control , Infection Control/methods , SARS-CoV-2 , Hospitals, Community
SELECTION OF CITATIONS
SEARCH DETAIL