Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 95
Filter
1.
Alzheimers Dement (Amst) ; 16(2): e12600, 2024.
Article in English | MEDLINE | ID: mdl-38912305

ABSTRACT

INTRODUCTION: The variability in apolipoprotein E (APOE) ε4-attributed susceptibility to Alzheimer's disease (AD) across ancestries, sexes, and ages may stem from the modulating effects of other genetic variants. METHODS: We examined associations of compound genotypes (CompGs) comprising the ε4-encoding rs429358, TOMM40 rs2075650, and APOC1 rs12721046 polymorphisms with AD in White (7181/16,356 AD-affected/unaffected), Hispanic/Latino (2305/2921), and Black American (547/1753) participants across sexes and ages. RESULTS: The absence and presence of the rs2075650 and/or rs12721046 minor alleles in the ε4-bearing CompGs define lower- and higher-AD-risk profiles, respectively, in White participants. They differentially impact AD risks in men and women of different ancestries, exhibiting an increasing, decreasing, flat, and nonlinear-with lower risks at ages younger than 65/70 years and older than 85 years compared to the ages in between-patterns across ages. DISCUSSION: The ε4-bearing CompGs have a potential to differentiate biological mechanisms of sex-, age-, and ancestry-specific AD risks and serve as AD biomarkers. Highlights: Younger White women carrying the lower-risk (LR) CompG are at small risk of AD.Black carriers of the LR CompG are at negligible risk of AD at 85 years and older.The higher-risk (HR) CompGs confer high AD risk in Whites and Blacks at 70 to 85 years.AD risk decreases with age for Hispanic/Lation women carrying the HR CompGs.Hispanic/Lation carriers of the LR CompG but not HR CompGs have higher AD risk than Blacks.

2.
J Am Geriatr Soc ; 72(1): 219-225, 2024 01.
Article in English | MEDLINE | ID: mdl-37814920

ABSTRACT

BACKGROUND: Higher levels of frailty, quantified by a frailty index (FI), may be linked to fatigue severity as tasks become more physically and mentally demanding. Fatigue, a component of frailty research, has been ambiguous and inconsistent in its operationalization. Fatigability-the quantification of vulnerability to fatigue in relation to specific intensity and duration of activities-offers a more sensitive and standardized approach, though the association between frailty and fatigability has not been assessed. METHODS: Using cross-sectional data from the Long Life Family Study at Visit 2 (2014-2017; N = 2524; mean age ± standard deviation (SD) 71.4 ± 11.2 years; 55% women; 99% White), we examined associations between an 83-item FI after excluding fatigue items (ratio of number of health problems reported (numerator) out of the total assessed (denominator); higher ratio = greater frailty) and perceived physical and mental fatigability using the Pittsburgh Fatigability Scale (PFS) (range 0-50; higher scores = greater fatigability). RESULTS: Participants had mean ± standard deviation FI (0.08 ± 0.06; observed range: 0.0-0.43), PFS Physical (13.7 ± 9.6; 39.5% more severe, ≥15), and PFS Mental (7.9 ± 8.9; 22.8% more severe, ≥13). The prevalence of more severe physical and mental fatigability was higher across FI quartiles. In mixed effects models accounting for family structure, a clinically meaningful 3%-higher FI was associated with 1.9 points higher PFS Physical score (95% confidence interval (CI) 1.7-2.1) and 1.7 points higher PFS Mental score (95% CI 1.5-1.9) after adjusting for covariates. CONCLUSIONS: Frailty was associated with perceived physical and mental fatigability severity. Understanding this association may support the development of interventions to mitigate the risks associated with greater frailty and perceived fatigability. Including measurements of perceived fatigability, in lieu of fatigue, in frailty indices has the potential to alleviate the inconsistencies and ambiguity surrounding the operationalization of fatigue and provide a more precise and sensitive measurement of frailty.


Subject(s)
Frailty , Humans , Female , Male , Cross-Sectional Studies , Frailty/epidemiology , Fatigue/epidemiology , Research Design
3.
Genes (Basel) ; 14(10)2023 09 22.
Article in English | MEDLINE | ID: mdl-37895183

ABSTRACT

Alzheimer's disease (AD) and cardiovascular traits might share underlying causes. We sought to identify clusters of cardiovascular traits that share genetic factors with AD. We conducted a univariate exome-wide association study and pair-wise pleiotropic analysis focused on AD and 16 cardiovascular traits-6 diseases and 10 cardio-metabolic risk factors-for 188,260 UK biobank participants. Our analysis pinpointed nine genetic markers in the APOE gene region and four loci mapped to the CDK11, OBP2B, TPM1, and SMARCA4 genes, which demonstrated associations with AD at p ≤ 5 × 10-4 and pleiotropic associations at p ≤ 5 × 10-8. Using hierarchical cluster analysis, we grouped the phenotypes from these pleiotropic associations into seven clusters. Lipids were divided into three clusters: low-density lipoprotein and total cholesterol, high-density lipoprotein cholesterol, and triglycerides. This split might differentiate the lipid-related mechanisms of AD. The clustering of body mass index (BMI) with weight but not height indicates that weight defines BMI-AD pleiotropy. The remaining two clusters included (i) coronary heart disease and myocardial infarction; and (ii) hypertension, diabetes mellitus (DM), systolic and diastolic blood pressure. We found that all AD protective alleles were associated with larger weight and higher DM risk. Three of the four (75%) clusters of traits, which were significantly correlated with AD, demonstrated antagonistic genetic heterogeneity, characterized by different directions of the genetic associations and trait correlations. Our findings suggest that shared genetic factors between AD and cardiovascular traits mostly affect them in an antagonistic manner.


Subject(s)
Alzheimer Disease , Cardiovascular Diseases , Humans , Alzheimer Disease/genetics , Exome/genetics , Genome-Wide Association Study , Genetic Predisposition to Disease , Phenotype , Cardiovascular Diseases/genetics , Cholesterol , DNA Helicases/genetics , Nuclear Proteins/genetics , Transcription Factors/genetics
4.
Genes (Basel) ; 14(9)2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37761806

ABSTRACT

Sporadic Alzheimer's disease (AD) is a polygenic neurodegenerative disorder. Single-nucleotide polymorphisms (SNPs) in multiple genes (e.g., CLU and ABCA7) have been associated with AD. However, none of them were characterized as causal variants that indicate the complex genetic architecture of AD, which is likely affected by individual variants and their interactions. We performed a meta-analysis of four independent cohorts to examine associations of 32 CLU and 50 ABCA7 polymorphisms as well as their 496 and 1225 pair-wise interactions with AD. The single SNP analyses revealed that six CLU and five ABCA7 SNPs were associated with AD. Ten of them were previously not reported. The interaction analyses identified AD-associated compound genotypes for 25 CLU and 24 ABCA7 SNP pairs, whose comprising SNPs were not associated with AD individually. Three and one additional CLU and ABCA7 pairs composed of the AD-associated SNPs showed partial interactions as the minor allele effect of one SNP in each pair was intensified in the absence of the minor allele of the other SNP. The interactions identified here may modulate associations of the CLU and ABCA7 variants with AD. Our analyses highlight the importance of the roles of combinations of genetic variants in AD risk assessment.

5.
J Alzheimers Dis ; 94(3): 1121-1132, 2023.
Article in English | MEDLINE | ID: mdl-37355909

ABSTRACT

BACKGROUND: The lack of efficient preventive interventions against Alzheimer's disease (AD) calls for identifying efficient modifiable risk factors for AD. As diabetes shares many pathological processes with AD, including accumulation of amyloid plaques and neurofibrillary tangles, insulin resistance, and impaired glucose metabolism, diabetes is thought to be a potentially modifiable risk factor for AD. Mounting evidence suggests that links between AD and diabetes may be more complex than previously believed. OBJECTIVE: To examine the pleiotropic architecture of AD and diabetes mellitus (DM). METHODS: Univariate and pleiotropic analyses were performed following the discovery-replication strategy using individual-level data from 10 large-scale studies. RESULTS: We report a potentially novel pleiotropic NOTCH2 gene, with a minor allele of rs5025718 associated with increased risks of both AD and DM. We confirm previously identified antagonistic associations of the same variants with the risks of AD and DM in the HLA and APOE gene clusters. We show multiple antagonistic associations of the same variants with AD and DM in the HLA cluster, which were not explained by the lead SNP in this cluster. Although the ɛ2 and ɛ4 alleles played a major role in the antagonistic associations with AD and DM in the APOE cluster, we identified non-overlapping SNPs in this cluster, which were adversely and beneficially associated with AD and DM independently of the ɛ2 and ɛ4 alleles. CONCLUSION: This study emphasizes differences and similarities in the heterogeneous genetic architectures of AD and DM, which may differentiate the pathogenic mechanisms of these diseases.


Subject(s)
Alzheimer Disease , Diabetes Mellitus , Insulin Resistance , Humans , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Diabetes Mellitus/epidemiology , Diabetes Mellitus/genetics , Risk Factors , Apolipoproteins E/genetics
6.
Stat Med ; 42(16): 2760-2776, 2023 07 20.
Article in English | MEDLINE | ID: mdl-37082822

ABSTRACT

A robust and fast two-sample test for equal Pearson correlation coefficients (PCCs) is important in solving many biological problems, including, for example, analysis of differential co-expression. However, few existing methods for this test can achieve robustness against deviation from normal distributions, accuracy under small sample sizes, and computational efficiency simultaneously. Here, we propose a new method for testing differential correlation using a saddlepoint approximation of the residual bootstrap (DICOSAR). To achieve robustness, accuracy, and efficiency, DICOSAR combines the ideas underlying the pooled residual bootstrap, the signed root of a likelihood ratio statistic, and a multivariate saddlepoint approximation. Through a comprehensive simulation study and a real data analysis of gene co-expression, we demonstrate that DICOSAR is accurate and robust in controlling the type I error rate for detecting differential correlation and provides a faster alternative to the bootstrap and permutation methods. We further show that DICOSAR can also be used for testing differential correlation matrices. These results suggest that DICOSAR provides an analytical approach to facilitate rapid testing for the equality of PCCs in large-scale analysis.


Subject(s)
Data Analysis , Humans , Computer Simulation , Sample Size
7.
Aging (Albany NY) ; 15(9): 3249-3272, 2023 04 18.
Article in English | MEDLINE | ID: mdl-37074818

ABSTRACT

Associations of single nucleotide polymorphisms (SNPs) of the MLXIPL lipid gene with Alzheimer's (AD) and coronary heart disease (CHD) and potentially causal mediation effects of their risk factors, high-density lipoprotein cholesterol (HDL-C) and triglycerides (TG), were examined in two samples of European ancestry from the US (22,712 individuals 587/2,608 AD/CHD cases) and the UK Biobank (UKB) (232,341 individuals; 809/15,269 AD/CHD cases). Our results suggest that these associations can be regulated by several biological mechanisms and shaped by exogenous exposures. Two patterns of associations (represented by rs17145750 and rs6967028) were identified. Minor alleles of rs17145750 and rs6967028 demonstrated primary (secondary) association with high TG (lower HDL-C) and high HDL-C (lower TG) levels, respectively. The primary association explained ~50% of the secondary one suggesting partly independent mechanisms of TG and HDL-C regulation. The magnitude of the association of rs17145750 with HDL-C was significantly higher in the US vs. UKB sample and likely related to differences in exogenous exposures in the two countries. rs17145750 demonstrated a significant detrimental indirect effect through TG on AD risk in the UKB only (ßIE = 0.015, pIE = 1.9 × 10-3), which suggests protective effects of high TG levels against AD, likely shaped by exogenous exposures. Also, rs17145750 demonstrated significant protective indirect effects through TG and HDL-C in the associations with CHD in both samples. In contrast, rs6967028 demonstrated an adverse mediation effect through HDL-C on CHD risk in the US sample only (ßIE = 0.019, pIE = 8.6 × 10-4). This trade-off suggests different roles of triglyceride mediated mechanisms in the pathogenesis of AD and CHD.


Subject(s)
Alzheimer Disease , Coronary Disease , Humans , Genetic Predisposition to Disease , Alzheimer Disease/epidemiology , Alzheimer Disease/genetics , Triglycerides , Coronary Disease/epidemiology , Coronary Disease/genetics , Risk Factors , Cholesterol, HDL
8.
Geroscience ; 45(1): 233-247, 2023 02.
Article in English | MEDLINE | ID: mdl-35809216

ABSTRACT

The mechanisms of incomplete penetrance of risk-modifying impacts of apolipoprotein E (APOE) ε2 and ε4 alleles on Alzheimer's disease (AD) have not been fully understood. We performed genome-wide analysis of differences in linkage disequilibrium (LD) patterns between 6,136 AD-affected and 10,555 AD-unaffected subjects from five independent studies to explore whether the association of the APOE ε2 allele (encoded by rs7412 polymorphism) and ε4 allele (encoded by rs429358 polymorphism) with AD was modulated by autosomal polymorphisms. The LD analysis identified 24 (mostly inter-chromosomal) and 57 (primarily intra-chromosomal) autosomal polymorphisms with significant differences in LD with either rs7412 or rs429358, respectively, between AD-affected and AD-unaffected subjects, indicating their potential modulatory roles. Our Cox regression analysis showed that minor alleles of four inter-chromosomal and ten intra-chromosomal polymorphisms exerted significant modulating effects on the ε2- and ε4-associated AD risks, respectively, and identified ε2-independent (rs2884183 polymorphism, 11q22.3) and ε4-independent (rs483082 polymorphism, 19q13.32) associations with AD. Our functional analysis highlighted ε2- and/or ε4-linked processes affecting the lipid and lipoprotein metabolism and cell junction organization which may contribute to AD pathogenesis. These findings provide insights into the ε2- and ε4-associated mechanisms of AD pathogenesis, underlying their incomplete penetrance.


Subject(s)
Alzheimer Disease , Humans , Apolipoprotein E2/genetics , Alzheimer Disease/genetics , Genotype , Apolipoproteins E/genetics
9.
Aging (Albany NY) ; 14(24): 9782-9804, 2022 11 17.
Article in English | MEDLINE | ID: mdl-36399096

ABSTRACT

Capturing the genetic architecture of Alzheimer's disease (AD) is challenging because of the complex interplay of genetic and non-genetic factors in its etiology. It has been suggested that AD biomarkers may improve the characterization of AD pathology and its genetic architecture. Most studies have focused on connections of individual genetic variants with AD biomarkers, whereas the role of combinations of genetic variants is substantially underexplored. We examined the associations of the APOE ε2 and ε4 alleles and polygenic profiles comprising the ε4-encoding rs429358, TOMM40 rs2075650, and APOC1 rs12721046 polymorphisms with cerebrospinal fluid (CSF) and plasma amyloid ß (Aß40 and Aß42) and tau biomarkers. Our findings support associations of the ε4 alleles with both plasma and CSF Aß42 and CSF tau, and the ε2 alleles with baseline, but not longitudinal, CSF Aß42 measurements. We found that the ε4-bearing polygenic profiles conferring higher and lower AD risks are differentially associated with tau but not Aß42. Modulation of the effect of the ε4 alleles by TOMM40 and APOC1 variants indicates the potential genetic mechanism of differential roles of Aß and tau in AD pathogenesis.


Subject(s)
Alzheimer Disease , Humans , Alleles , Alzheimer Disease/genetics , Alzheimer Disease/cerebrospinal fluid , Amyloid beta-Peptides/cerebrospinal fluid , Apolipoprotein E2/genetics , Apolipoproteins E/genetics , Biomarkers/cerebrospinal fluid , Mitochondrial Precursor Protein Import Complex Proteins , Peptide Fragments/genetics , Peptide Fragments/cerebrospinal fluid , tau Proteins/genetics , tau Proteins/cerebrospinal fluid
10.
Aging Cell ; 21(12): e13730, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36330582

ABSTRACT

Age-related diseases characteristic of post-reproductive life, aging, and life span are the examples of polygenic non-Mendelian traits with intricate genetic architectures. Polygenicity of these traits implies that multiple variants can impact their risks independently or jointly as combinations of specific variants. Here, we examined chances to live to older ages, 85 years and older, for carriers of compound genotypes comprised of combinations of genotypes of rs429358 (APOE ɛ4 encoding polymorphism), rs2075650 (TOMM40), and rs12721046 (APOC1) polymorphisms using data from four human studies. The choice of these polymorphisms was motivated by our prior results showing that the ɛ4 carriers having minor alleles of the other two polymorphisms were at exceptionally high risk of Alzheimer's disease (AD), compared with non-carriers of the minor alleles. Consistent with our prior findings for AD, we show here that the adverse effect of the ɛ4 allele on survival to older ages is significantly higher in carriers of minor alleles of rs2075650 and/or rs12721046 polymorphisms compared with their non-carriers. The exclusion of AD cases made this effect stronger. Our results provide compelling evidence that AD does not mediate the associations of the same compound genotypes with chances to survive until older ages, indicating the existence of genetically heterogeneous mechanisms. The survival chances can be mainly associated with lipid- and immunity-related mechanisms, whereas the AD risk, can be driven by the AD-biomarker-related mechanism, among others. Targeting heterogeneous polygenic profiles of individuals at high risks of complex traits is promising for the translation of genetic discoveries to health care.


Subject(s)
Alzheimer Disease , Apolipoproteins E , Humans , Middle Aged , Aged , Apolipoproteins E/genetics , Alleles , Genotype , Alzheimer Disease/genetics , Heterozygote , Apolipoprotein E4/genetics , Mitochondrial Precursor Protein Import Complex Proteins
11.
Front Aging Neurosci ; 14: 1023493, 2022.
Article in English | MEDLINE | ID: mdl-36389057

ABSTRACT

The APOE ε2, ε3, and ε4 alleles differentially impact various complex diseases and traits. We examined whether these alleles modulated associations of 94 single-nucleotide polymorphisms (SNPs) harbored by 26 genes in 19q13.3 region with 217 plasma metabolites using Framingham Heart Study data. The analyses were performed in the E2 (ε2ε2 or ε2ε3 genotype), E3 (ε3ε3 genotype), and E4 (ε3ε4 or ε4ε4 genotype) groups separately. We identified 31, 17, and 22 polymorphism-metabolite associations in the E2, E3, and E4 groups, respectively, at a false discovery rate P FDR < 0.05. These entailed 51 and 19 associations with 20 lipid and 12 polar analytes. Contrasting the effect sizes between the analyzed groups showed 20 associations with group-specific effects at Bonferroni-adjusted P < 7.14E-04. Three associations with glutamic acid or dimethylglycine had significantly larger effects in the E2 than E3 group and 12 associations with triacylglycerol 56:5, lysophosphatidylethanolamines 16:0, 18:0, 20:4, or phosphatidylcholine 38:6 had significantly larger effects in the E2 than E4 group. Two associations with isocitrate or propionate and three associations with phosphatidylcholines 32:0, 32:1, or 34:0 had significantly larger effects in the E4 than E3 group. Nine of 70 SNP-metabolite associations identified in either E2, E3, or E4 groups attained P FDR < 0.05 in the pooled sample of these groups. However, none of them were among the 20 group-specific associations. Consistent with the evolutionary history of the APOE alleles, plasma metabolites showed higher APOE-cluster-related variations in the E4 than E2 and E3 groups. Pathway enrichment mainly highlighted lipids and amino acids metabolism and citrate cycle, which can be differentially impacted by the APOE alleles. These novel findings expand insights into the genetic heterogeneity of plasma metabolites and highlight the importance of the APOE-allele-stratified genetic analyses of the APOE-related diseases and traits.

12.
Transl Psychiatry ; 12(1): 163, 2022 04 18.
Article in English | MEDLINE | ID: mdl-35436980

ABSTRACT

Elucidating regulatory effects of Alzheimer's disease (AD)-associated genetic variants is critical for unraveling their causal pathways and understanding the pathology. However, their cell-type-specific regulatory mechanisms in the brain remain largely unclear. Here, we conducted an analysis of allele-specific expression quantitative trait loci (aseQTLs) for 33 AD-associated variants in four brain regions and seven cell types using ~3000 bulk RNA-seq samples and >0.25 million single nuclei. We first develop a flexible hierarchical Poisson mixed model (HPMM) and demonstrate its superior statistical power to a beta-binomial model achieved by unifying samples in both allelic and genotype-level expression data. Using the HPMM, we identified 24 (~73%) aseQTLs in at least one brain region, including three new eQTLs associated with CA12, CHRNE, and CASS4. Notably, the APOE ε4 variant reduces APOE expression across all regions, even in AD-unaffected controls. Our results reveal region-dependent and exon-specific effects of multiple aseQTLs, such as rs2093760 with CR1, rs7982 with CLU, and rs3865444 with CD33. In an attempt to pinpoint the cell types responsible for the observed tissue-level aseQTLs using the snRNA-seq data, we detected many aseQTLs in microglia or monocytes associated with immune-related genes, including HLA-DQB1, HLA-DQA2, CD33, FCER1G, MS4A6A, SPI1, and BIN1, highlighting the regulatory role of AD-associated variants in the immune response. These findings provide further insights into potential causal pathways and cell types mediating the effects of the AD-associated variants.


Subject(s)
Alzheimer Disease , Alleles , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Exons , Genetic Predisposition to Disease , Humans , Polymorphism, Single Nucleotide , Quantitative Trait Loci
13.
J Appl Genet ; 63(2): 315-325, 2022 May.
Article in English | MEDLINE | ID: mdl-34981446

ABSTRACT

Lung, breast, prostate, and colorectal cancers are among the most common and fatal malignancies worldwide. They are mainly caused by multifactorial mechanisms and are genetically heterogeneous. We investigated the genetic architecture of these cancers through genome-wide association, pathway-based, and summary-based transcriptome-/methylome-wide association analyses using three independent cohorts. Our genome-wide association analyses identified the associations of 33 single-nucleotide polymorphisms (SNPs) at P < 5E - 06, of which 32 SNPs were not previously reported and did not have proxy variants within their ± 1 Mb flanking regions. Moreover, other polymorphisms mapped to their closest genes were not previously associated with the same cancers at P < 5E - 06. Our pathway enrichment analyses revealed associations of 32 pathways; mainly related to the immune system, DNA replication/transcription, and chromosomal organization; with the studied cancers. Also, 60 probes were associated with these cancers in our transcriptome-wide and methylome-wide analyses. The ± 1 Mb flanking regions of most probes had not attained P < 5E - 06 in genome-wide association studies. The genes corresponding to the significant probes can be considered as potential targets for further functional studies. Two genes (i.e., CDC14A and PMEL) demonstrated stronger evidence of associations with lung cancer as they had significant probes in both transcriptome-wide and methylome-wide association analyses. The novel cancer-associated SNPs and genes identified here would advance our understanding of the genetic heterogeneity of the common cancers.


Subject(s)
Genetic Predisposition to Disease , Neoplasms , Genome-Wide Association Study , Humans , Multifactorial Inheritance , Neoplasms/genetics , Polymorphism, Single Nucleotide , Protein Tyrosine Phosphatases/genetics
14.
Alzheimers Dement ; 18(11): 2067-2078, 2022 11.
Article in English | MEDLINE | ID: mdl-34978151

ABSTRACT

INTRODUCTION: The apolipoprotein E (APOE) ε2 and ε4 alleles have beneficial and adverse impacts on Alzheimer's disease (AD), respectively, with incomplete penetrance, which may be modulated by other genetic variants. METHODS: We examined whether the associations of the APOE alleles with other polymorphisms in the genome can be sensitive to AD-affection status. RESULTS: We identified associations of the ε2 and ε4 alleles with 314 and 232 polymorphisms, respectively. Of them, 35 and 31 polymorphisms had significantly different effects in AD-affected and -unaffected groups, suggesting their potential involvement in the AD pathogenesis by modulating the effects of the ε2 and ε4 alleles, respectively. Our survival-type analysis of the AD risk supported modulating roles of multiple group-specific polymorphisms. Our functional analysis identified gene enrichment in multiple immune-related biological processes, for example, B cell function. DISCUSSION: These findings suggest involvement of local and inter-chromosomal modulators of the effects of the APOE alleles on the AD risk.


Subject(s)
Alzheimer Disease , Humans , Alleles , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Genotype , Apolipoproteins E/genetics , Apolipoprotein E2/genetics , Apolipoprotein E4/genetics
15.
Neurobiol Aging ; 110: 122-131, 2022 02.
Article in English | MEDLINE | ID: mdl-34625307

ABSTRACT

Despite advances, the roles of genetic variants from the APOE-harboring 19q13.32 region in Alzheimer's disease (AD) remain controversial. We leverage a comprehensive approach to gain insights into a more homogeneous genetic architecture of AD in this region. We use a sample of 2,673 AD-affected and 16,246 unaffected subjects from 4 studies and validate our main findings in the landmark Alzheimer's Disease Genetics Consortium cohort (3,662 AD-cases and 1,541 controls). We report the remarkably high excesses of the AD risk for carriers of the ε4 allele who also carry minor alleles of rs2075650 (TOMM40) and rs12721046 (APOC1) polymorphisms compared to carriers of their major alleles. The exceptionally high 4.37-fold (p=1.34 × 10-3) excess was particularly identified for the minor allele homozygotes. The beneficial and adverse variants were significantly depleted and enriched, respectively, in the AD-affected families. This study provides compelling evidence for the definitive roles of the APOE-TOMM40-APOC1 variants in the AD risk.


Subject(s)
Alzheimer Disease/genetics , Apolipoprotein C-I/genetics , Apolipoproteins E/genetics , Genetic Association Studies , Genetic Predisposition to Disease/genetics , Mitochondrial Precursor Protein Import Complex Proteins/genetics , Polymorphism, Genetic/genetics , Aged , Alleles , Cohort Studies , Female , Heterozygote , Homozygote , Humans , Male , Risk
16.
Geroscience ; 44(2): 1141-1156, 2022 04.
Article in English | MEDLINE | ID: mdl-34554385

ABSTRACT

The APOE ε2/ε3/ε4 polymorphism is associated with multiple non-Mendelian traits, including high- (HDL-C) and low- (LDL-C) density lipoprotein cholesterol, triglycerides, body mass index (BMI), coronary heart disease (CHD), and Alzheimer's disease (AD). Lipids and BMI are risk factors for AD and CHD. Causal connections between the ε2 and ε4 alleles and these traits remain, however, poorly understood. We leverage comprehensive analyses of longitudinal data from four studies to examine potentially causal heterogeneous connections between these alleles, lipids, BMI, and diseases. We emphasize mutual mediation roles of lipids and BMI in their associations with the ε2 and ε4 alleles and their mediation roles in the associations of these alleles with AD and CHD. We confirmed previously reported significant univariate associations of these alleles with each trait, except CHD. We found, however, that most of the univariate- and mediation-analysis associations were affected by antagonistic heterogeneity/mediation. The mutual mediation analysis identified the associations of the APOE alleles with LDL-C as the least heterogeneous. The ε2 and ε4 alleles were associated with CHD through lipids, led by beneficial (ßIE = - 0.071, pIE = 2.28 × 10-10) and adverse (ßIE = 0.019, pIE = 7.37 × 10-6) associations, respectively, through LDL-C. Both these alleles were adversely associated with CHD through triglycerides. For AD, only BMI partially mediated the adverse association of the ε4 allele with AD (ßIE = 0.016, pIE = 2.09 × 10-2). Our results suggest different roles of BMI and lipids in the AD and CHD pathogeneses. More comprehensive studies of causal connections between genetic variants and non-Mendelian traits are required as they can be critically affected by heterogeneous antagonistic relationships.


Subject(s)
Alzheimer Disease , Apolipoproteins E , Coronary Disease , Alzheimer Disease/genetics , Apolipoproteins E/genetics , Body Mass Index , Cholesterol, LDL/genetics , Coronary Disease/genetics , Genotype , Humans , Triglycerides/blood
17.
Geroscience ; 44(1): 265-280, 2022 02.
Article in English | MEDLINE | ID: mdl-34743297

ABSTRACT

Epidemiological studies report beneficial associations of higher educational attainment (EDU) with Alzheimer's disease (AD). Prior genome-wide association studies (GWAS) also reported variants associated with AD and EDU separately. The analysis of pleiotropic associations with these phenotypes may shed light on EDU-related protection against AD. We performed pleiotropic meta-analyses using Fisher's method and omnibus test applied to summary statistics for single nucleotide polymorphisms (SNPs) associated with AD and EDU in large-scale univariate GWAS at suggestive-effect (5 × 10-8 < p < 0.1) and genome-wide (p ≤ 5 × 10-8) significance levels. We report 53 SNPs that attained p ≤ 5 × 10-8 at least in one of the pleiotropic meta-analyses and were reported in the univariate GWAS at 5 × 10-8 < p < 0.1. Of them, there were 46 pleiotropic SNPs according to Fisher's method. Additionally, Fisher's method identified 25 of 206 SNPs with pleiotropic effects, which attained p ≤ 5 × 10-8 in the univariate GWAS. We showed that a large fraction of the pleiotropic associations was affected by a counterintuitive phenomenon of antagonistic genetic heterogeneity, which explains the increase, rather than decrease, of the significance of the pleiotropic associations in the omnibus test. Functional enrichment analysis showed that apart from cancers, gene set harboring the non-pleiotropic SNPs was characterized by late-onset AD and neurodevelopmental disorders. The pleiotropic gene set was characterized by a broad spectrum of progressive neurological and neuromuscular diseases and immune-mediated conditions, including progressive motor neuropathy, multiple sclerosis, Parkinson's disease, and severe AD. Our results suggest that disentangling genes harboring variants with and without pleiotropic associations with AD and EDU is promising for dissecting heterogeneity in biological mechanisms of AD.


Subject(s)
Alzheimer Disease , Genome-Wide Association Study , Alzheimer Disease/genetics , Genetic Pleiotropy , Genetic Predisposition to Disease , Genome-Wide Association Study/methods , Humans , Polymorphism, Single Nucleotide
18.
Alzheimers Dement ; 17(11): 1779-1787, 2021 11.
Article in English | MEDLINE | ID: mdl-34310032

ABSTRACT

INTRODUCTION: Despite advances, understanding the protective role of the apolipoprotein E (APOE) ε2 allele in Alzheimer's disease (AD) remains elusive. METHODS: We examined associations of variants comprised of the TOMM40 rs8106922 and APOE rs405509, rs440446, and ε2-encoding rs7412 polymorphisms with AD in a sample of 2862 AD-affected and 169,516 AD-unaffected non-carriers of the ε4 allele. RESULTS: Association of the ε2/ε3 heterozygote of men with AD is 38% (P = 1.65 × 10-2 ) more beneficial when it is accompanied by rs8106922 major allele homozygote and rs405509 and rs440446 heterozygotes than by rs8106922 heterozygote and rs405509 and rs440446 major allele homozygotes. No difference in the beneficial associations of these two most common ε2/ε3-bearing variants with AD was identified in women. The role of ε2/ε3 heterozygote may be affected by different immunomodulation functions of rs8106922, rs405509, and rs440446 variants in a sex-specific manner. DISCUSSION: Combination of TOMM40 and APOE variants defines a more homogeneous AD-protective ε2/ε3-bearing profile in men.


Subject(s)
Alzheimer Disease/genetics , Apolipoprotein E2/genetics , Apolipoprotein E3/genetics , Mitochondrial Precursor Protein Import Complex Proteins/genetics , Polymorphism, Genetic , Protective Factors , Aged , Aged, 80 and over , Alleles , Genotype , Heterozygote , Humans , Male , Risk Factors , Sex Factors
19.
Genes (Basel) ; 12(5)2021 05 01.
Article in English | MEDLINE | ID: mdl-34062886

ABSTRACT

Almost all complex disorders have manifested epidemiological and clinical sex disparities which might partially arise from sex-specific genetic mechanisms. Addressing such differences can be important from a precision medicine perspective which aims to make medical interventions more personalized and effective. We investigated sex-specific genetic associations with colorectal (CRCa) and lung (LCa) cancers using genome-wide single-nucleotide polymorphisms (SNPs) data from three independent datasets. The genome-wide association analyses revealed that 33 SNPs were associated with CRCa/LCa at P < 5.0 × 10-6 neither males or females. Of these, 26 SNPs had sex-specific effects as their effect sizes were statistically different between the two sexes at a Bonferroni-adjusted significance level of 0.0015. None had proxy SNPs within their ±1 Mb regions and the closest genes to 32 SNPs were not previously associated with the corresponding cancers. The pathway enrichment analyses demonstrated the associations of 35 pathways with CRCa or LCa which were mostly implicated in immune system responses, cell cycle, and chromosome stability. The significant pathways were mostly enriched in either males or females. Our findings provided novel insights into the potential sex-specific genetic heterogeneity of CRCa and LCa at SNP and pathway levels.


Subject(s)
Colorectal Neoplasms/genetics , Genetic Heterogeneity , Lung Neoplasms/genetics , Polymorphism, Single Nucleotide , Adult , Aged , Female , Gene Frequency , Humans , Male , Middle Aged , Sex Factors
20.
Commun Biol ; 4(1): 629, 2021 05 26.
Article in English | MEDLINE | ID: mdl-34040149

ABSTRACT

The increasing availability of single-cell data revolutionizes the understanding of biological mechanisms at cellular resolution. For differential expression analysis in multi-subject single-cell data, negative binomial mixed models account for both subject-level and cell-level overdispersions, but are computationally demanding. Here, we propose an efficient NEgative Binomial mixed model Using a Large-sample Approximation (NEBULA). The speed gain is achieved by analytically solving high-dimensional integrals instead of using the Laplace approximation. We demonstrate that NEBULA is orders of magnitude faster than existing tools and controls false-positive errors in marker gene identification and co-expression analysis. Using NEBULA in Alzheimer's disease cohort data sets, we found that the cell-level expression of APOE correlated with that of other genetic risk factors (including CLU, CST3, TREM2, C1q, and ITM2B) in a cell-type-specific pattern and an isoform-dependent manner in microglia. NEBULA opens up a new avenue for the broad application of mixed models to large-scale multi-subject single-cell data.


Subject(s)
Computational Biology/methods , Gene Expression Profiling/methods , Single-Cell Analysis/methods , Alzheimer Disease/genetics , Apolipoproteins E/genetics , Binomial Distribution , Gene Expression/genetics , Humans , Microglia/metabolism , Models, Statistical
SELECTION OF CITATIONS
SEARCH DETAIL
...