Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
Front Endocrinol (Lausanne) ; 14: 1166961, 2023.
Article in English | MEDLINE | ID: mdl-37361522

ABSTRACT

Background and purpose: Napping is a widespread practice worldwide and has in recent years been linked to increased abdominal adiposity. Lipase E or LIPE encodes the protein hormone-sensitive lipase (HSL), an enzyme that plays an important role in lipid mobilization and exhibits a circadian expression rhythm in human adipose tissue. We hypothesized that habitual napping may impact the circadian expression pattern of LIPE, which in turn may attenuate lipid mobilization and induce abdominal fat accumulation. Methods: Abdominal adipose tissue explants from participants with obesity (n = 17) were cultured for a 24-h duration and analyzed every 4 h. Habitual nappers (n = 8) were selected to match non-nappers (n = 9) in age, sex, BMI, adiposity, and metabolic syndrome traits. Circadian LIPE expression rhythmicity was analyzed using the cosinor method. Results: Adipose tissue explants exhibited robust circadian rhythms in LIPE expression in non-nappers. In contrast, nappers had a flattened rhythm. LIPE amplitude was decreased in nappers as compared with non-nappers (71% lower). The decrease in amplitude among nappers was related to the frequency of napping (times per week) where a lower rhythm amplitude was associated with a higher napping frequency (r = -0.80; P = 0.018). Confirmatory analyses in the activity of LIPE's protein (i.e., HSL) also showed a significant rhythm in non-nappers, whereas significance in the activity of HSL was lost among nappers. Conclusion: Our results suggest that nappers display dysregulated circadian LIPE expression as well as dysregulated circadian HSL activity, which may alter lipid mobilization and contribute to increased abdominal obesity in habitual nappers.


Subject(s)
Adipose Tissue , Lipase , Sterol Esterase , Humans , Abdominal Fat/metabolism , Adipose Tissue/metabolism , Circadian Rhythm , Obesity/metabolism , Sterol Esterase/metabolism
2.
Sci Rep ; 12(1): 3666, 2022 03 07.
Article in English | MEDLINE | ID: mdl-35256633

ABSTRACT

Total body fat and central fat distribution are heritable traits and well-established predictors of adverse metabolic outcomes. Lipolysis is the process responsible for the hydrolysis of triacylglycerols stored in adipocytes. To increase our understanding of the genetic regulation of body fat distribution and total body fat, we set out to determine if genetic variants associated with body mass index (BMI) or waist-hip-ratio adjusted for BMI (WHRadjBMI) in genome-wide association studies (GWAS) mediate their effect by influencing adipocyte lipolysis. We utilized data from the recent GWAS of spontaneous and isoprenaline-stimulated lipolysis in the unique GENetics of Adipocyte Lipolysis (GENiAL) cohort. GENiAL consists of 939 participants who have undergone abdominal subcutaneous adipose biopsy for the determination of spontaneous and isoprenaline-stimulated lipolysis in adipocytes. We report 11 BMI and 15 WHRadjBMI loci with SNPs displaying nominal association with lipolysis and allele-dependent gene expression in adipose tissue according to in silico analysis. Functional evaluation of candidate genes in these loci by small interfering RNAs (siRNA)-mediated knock-down in adipose-derived stem cells identified ZNF436 and NUP85 as intrinsic regulators of lipolysis consistent with the associations observed in the clinical cohorts. Furthermore, candidate genes in another BMI-locus (STX17) and two more WHRadjBMI loci (NID2, GGA3, GRB2) control lipolysis alone, or in conjunction with lipid storage, and may hereby be involved in genetic control of body fat. The findings expand our understanding of how genetic variants mediate their impact on the complex traits of fat storage and distribution.


Subject(s)
Genome-Wide Association Study , Lipolysis , Adipocytes/metabolism , Adipose Tissue/metabolism , Genetic Loci , Humans , Isoproterenol/metabolism , Lipolysis/genetics , Transcription Factors/metabolism
3.
Diabetes ; 71(6): 1350-1362, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35320353

ABSTRACT

Interindividual differences in generation of new fat cells determine body fat and type 2 diabetes risk. In the GENetics of Adipocyte Lipolysis (GENiAL) cohort, which consists of participants who have undergone abdominal adipose biopsy, we performed a genome-wide association study (GWAS) of fat cell number (n = 896). Candidate genes from the genetic study were knocked down by siRNA in human adipose-derived stem cells. We report 318 single nucleotide polymorphisms (SNPs) and 17 genetic loci displaying suggestive (P < 1 × 10-5) association with fat cell number. Two loci pass threshold for GWAS significance, on chromosomes 2 (lead SNP rs149660479-G) and 7 (rs147389390-deletion). We filtered for fat cell number-associated SNPs (P < 1.00 × 10-5) using evidence of genotype-specific expression. Where this was observed we selected genes for follow-up investigation and hereby identified SPATS2L and KCTD18 as regulators of cell proliferation consistent with the genetic data. Furthermore, 30 reported type 2 diabetes-associated SNPs displayed nominal and consistent associations with fat cell number. In functional follow-up of candidate genes, RPL8, HSD17B12, and PEPD were identified as displaying effects on cell proliferation consistent with genetic association and gene expression findings. In conclusion, findings presented herein identify SPATS2L, KCTD18, RPL8, HSD17B12, and PEPD of potential importance in controlling fat cell numbers (plasticity), the size of body fat, and diabetes risk.


Subject(s)
Diabetes Mellitus, Type 2 , Genome-Wide Association Study , Adipocytes/metabolism , Adipose Tissue/metabolism , Cell Count , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Genetic Loci , Humans , Polymorphism, Single Nucleotide
5.
Physiol Rep ; 8(16): e14538, 2020 08.
Article in English | MEDLINE | ID: mdl-32812397

ABSTRACT

BACKGROUND: In obesity, the expression level of thyroid stimulating hormone receptor in adipose tissue is reduced and the levels of thyroid stimulating hormone (TSH) are often elevated within the normal range. PURPOSE/AIM: To investigate the role of TSHR in brown and white adipose tissue (AT) using TSHR knockout (KO) mice and the physiological phenotypes affected by the TSHR knockout. METHODS: AT-specific TSHR KO male mice and wild type (WT) controls were given a high-fat diet (HFD) or a control diet (CD). Body weights and food consumption were recorded for 20 weeks and body temperatures for the first 3 weeks. At termination, white and brown adipocytes were isolated. Gene expressios was investigated using real-time PCR. In a subgroup of female KO mice, glucose tolerance was investigated. RESULTS: TSHR were partially knocked out in KO mice, which gained more weight than WT mice when fed both a CD (p = .03) and HFD (p = .003). Body temperatures were lower in KO mice on CD (p <.001) and on HFD (p <.001) than WT controls. This was in agreement with reduced gene expression of UCP1 in brown adipocytes in the KO mice. Glucose tolerance was significantly impaired in KO mice on CD mice before termination (p <.01). Expression of adipogenic and lipolytic genes were reduced in KO mice, which was exacerbated by HFD. The mRNA levels of adipokines including ADIPOQ and LEP were altered in white adipocytes of KO mice. CONCLUSIONS: TSHR KO led to dysfunction of both white and brown AT and predisposition to excess body weight gain in mice. Our data show that TSHR in AT regulates glucose tolerance, lipid metabolism, adipokine profile, and thermogenesis.


Subject(s)
Adipocytes/metabolism , Body Temperature , Body Weight , Receptors, Thyrotropin/metabolism , Animals , Cells, Cultured , Gene Deletion , Male , Mice , Mice, Inbred C57BL , Receptors, Thyrotropin/genetics , Transcriptome , Weight Gain
6.
J Clin Endocrinol Metab ; 105(12)2020 12 01.
Article in English | MEDLINE | ID: mdl-32725188

ABSTRACT

BACKGROUND: Fat mobilization in adipose tissue (AT) has a specific timing. However, circadian rhythms in the activity of the major enzyme responsible for fat mobilization, hormone-sensitive lipase (HSL), have not been demonstrated in humans. OBJECTIVE: To analyze in a cross-sectional study whether there is an endogenous circadian rhythm in HSL activity in human AT ex vivo and whether rhythm characteristics are related to food timing or fasting duration. METHODS: Abdominal AT biopsies were obtained from 18 severely obese participants (age: 46 ± 11 years; body mass index 42 ± 6 kg/m2) who underwent laparoscopic gastric bypass. Twenty-four-hour rhythms of HSL activity and LIPE (HSL transcript in humans) expression in subcutaneous AT were analyzed together with habitual food timing and night fasting duration. RESULTS: HSL activity exhibited a circadian rhythm (P = .023) and reached the maximum value at circadian time 16 (CT) that corresponded to around midnight (relative local clock time. Similarly, LIPE displayed a circadian rhythm with acrophase also at night (P = .0002). Participants with longer night fasting duration >11.20 hours displayed almost double the amplitude (1.91 times) in HSL activity rhythm than those with short duration (P = .013); while habitual early diners (before 21:52 hours) had 1.60 times higher amplitude than late diners (P = .035). CONCLUSIONS: Our results demonstrate circadian rhythms in HSL activity and may lead to a better understanding of the intricate relationships between food timing, fasting duration and body fat regulation.


Subject(s)
Adipose Tissue/metabolism , Circadian Rhythm/physiology , Fasting/metabolism , Obesity/metabolism , Sterol Esterase/metabolism , Adult , Cross-Sectional Studies , Female , Gastric Bypass , Humans , Life Style , Male , Middle Aged , Obesity/surgery
7.
Cells ; 9(5)2020 04 27.
Article in English | MEDLINE | ID: mdl-32349335

ABSTRACT

An increased adipocyte size relative to the size of fat depots, also denoted hypertrophic adipose morphology, is a strong risk factor for the future development of insulin resistance and type 2 diabetes. The regulation of adipose morphology is poorly understood. We set out to identify genetic loci associated with adipose morphology and functionally evaluate candidate genes for impact on adipocyte development. We performed a genome-wide association study (GWAS) in the unique GENetics of Adipocyte Lipolysis (GENiAL) cohort comprising 948 participants who have undergone abdominal subcutaneous adipose biopsy with a determination of average adipose volume and morphology. The GWAS identified 31 genetic loci displaying suggestive association with adipose morphology. Functional evaluation of candidate genes by small interfering RNAs (siRNA)-mediated knockdown in adipose-derived precursor cells identified six genes controlling adipocyte renewal and differentiation, and thus of potential importance for adipose hypertrophy. In conclusion, genetic and functional studies implicate a regulatory role for ATL2, ARHGEF10, CYP1B1, TMEM200A, C17orf51, and L3MBTL3 in adipose morphology by their impact on adipogenesis.


Subject(s)
Adipocytes/cytology , Diabetes Mellitus, Type 2/genetics , Obesity/genetics , Adipocytes/physiology , Adipogenesis/genetics , Adipose Tissue/cytology , Adipose Tissue/metabolism , Adiposity , Adult , Cell Differentiation , Cohort Studies , Diabetes Mellitus, Type 2/metabolism , Female , Genome-Wide Association Study/methods , Humans , Insulin/metabolism , Insulin Resistance/physiology , Lipolysis/physiology , Male , Middle Aged , Subcutaneous Fat
8.
Mol Metab ; 34: 85-96, 2020 04.
Article in English | MEDLINE | ID: mdl-32180562

ABSTRACT

OBJECTIVES: Lipolysis, hydrolysis of triglycerides to fatty acids in adipocytes, is tightly regulated, poorly understood, and, if perturbed, can lead to metabolic diseases including obesity and type 2 diabetes. The goal of this study was to identify the genetic regulators of lipolysis and elucidate their molecular mechanisms. METHODS: Adipocytes from abdominal subcutaneous adipose tissue biopsies were isolated and were incubated without (spontaneous lipolysis) or with a catecholamine (stimulated lipolysis) to analyze lipolysis. DNA was extracted and genome-wide genotyping and imputation conducted. After quality control, 939 samples with genetic and lipolysis data were available. Genome-wide association studies of spontaneous and stimulated lipolysis were conducted. Subsequent in vitro gene expression analyses were used to identify candidate genes and explore their regulation of adipose tissue biology. RESULTS: One locus on chromosome 19 demonstrated genome-wide significance with spontaneous lipolysis. 60 loci showed suggestive associations with spontaneous or stimulated lipolysis, of which many influenced both traits. In the chromosome 19 locus, only HIF3A was expressed in the adipocytes and displayed genotype-dependent gene expression. HIF3A knockdown in vitro increased lipolysis and the expression of key lipolysis-regulating genes. CONCLUSIONS: In conclusion, we identified a genetic regulator of spontaneous lipolysis and provided evidence of HIF3A as a novel key regulator of lipolysis in subcutaneous adipocytes as the mechanism through which the locus influences adipose tissue biology.


Subject(s)
Adipocytes/metabolism , Genome-Wide Association Study , Lipolysis/genetics , Adipose Tissue/metabolism , Adult , Apoptosis Regulatory Proteins/deficiency , Apoptosis Regulatory Proteins/genetics , Chromosomes, Human, Pair 19/genetics , Female , Humans , Male , Middle Aged , Phenotype , Repressor Proteins/deficiency , Repressor Proteins/genetics
9.
Metabolism ; 101: 153999, 2019 12.
Article in English | MEDLINE | ID: mdl-31672447

ABSTRACT

BACKGROUND: Adipose tissue plays a crucial role in diet- and obesity-related insulin resistance, with implications for several metabolic diseases. Identification of novel target genes and mechanisms that regulate adipocyte function could lead to improved treatment strategies. RND3 (RhoE/Rho8), a Rho-related GTP-binding protein that inhibits Rho kinase (ROCK) signaling, has been linked to diverse diseases such as apoptotic cardiomyopathy, heart failure, cancer and type 2 diabetes, in part by regulating cytoskeleton dynamics and insulin-mediated glucose uptake. RESULTS: We here investigated the expression of RND3 in adipose tissue in human obesity, and discovered a role for RND3 in regulating adipocyte metabolism. In cross-sectional and prospective studies, we observed 5-fold increased adipocyte levels of RND3 mRNA in obesity, reduced levels after surgery-induced weight loss, and positive correlations of RND3 mRNA with adipocyte size and surrogate measures of insulin resistance (HOMA2-IR and circulating triglyceride/high-density lipoprotein cholesterol (TAG/HDL-C) ratio). By screening for RND3-dependent gene expression following siRNA-mediated RND3 knockdown in differentiating human adipocytes, we found downregulation of inflammatory genes and upregulation of genes related to adipocyte ipolysis and insulin signaling. Treatment of adipocytes with tumor necrosis factor alpha (TNFα), lipopolysaccharide (LPS), hypoxia or cAMP analogs increased RND3 mRNA levels 1.5-2-fold. Functional assays in primary human adipocytes confirmed that RND3 knockdown reduces cAMP- and isoproterenol-induced lipolysis, which were mimicked by treating cells with ROCK inhibitor. This effect could partly be explained by reduced protein expression of adipose triglyceride lipase (ATGL) and phosphorylated hormone-sensitive lipase (HSL). CONCLUSION: We here uncovered a novel differential expression of adipose RND3 in obesity and insulin resistance, which may at least partly depend on a causal effect of RND3 on adipocyte lipolysis.


Subject(s)
Adipocytes/metabolism , Lipolysis/drug effects , rho GTP-Binding Proteins/physiology , Animals , Cells, Cultured , Cross-Sectional Studies , Gene Expression Regulation , Humans , Insulin Resistance , Obesity/metabolism , Prospective Studies , RNA, Messenger/metabolism , rho GTP-Binding Proteins/genetics , rho GTP-Binding Proteins/metabolism
10.
Sci Rep ; 9(1): 13891, 2019 09 25.
Article in English | MEDLINE | ID: mdl-31554889

ABSTRACT

MicroRNAs (miRNA) modulate gene expression through feed-back and forward loops. Previous studies identified miRNAs that regulate transcription factors, including Peroxisome Proliferator Activated Receptor Gamma (PPARG), in adipocytes, but whether they influence adipogenesis via such regulatory loops remain elusive. Here we predicted and validated a novel feed-forward loop regulating adipogenesis and involved miR-27a/b-3p, PPARG and Secretory Carrier Membrane Protein 3 (SCAMP3). In this loop, expression of both PPARG and SCAMP3 was independently suppressed by miR-27a/b-3p overexpression. Knockdown of PPARG downregulated SCAMP3 expression at the late phase of adipogenesis, whereas reduction of SCAMP3 mRNA levels increased PPARG expression at early phase in differentiation. The latter was accompanied with upregulation of adipocyte-enriched genes, including ADIPOQ and FABP4, suggesting an anti-adipogenic role for SCAMP3. PPARG and SCAMP3 exhibited opposite behaviors regarding correlations with clinical phenotypes, including body mass index, body fat mass, adipocyte size, lipolytic and lipogenic capacity, and secretion of pro-inflammatory cytokines. While adipose PPARG expression was associated with more favorable metabolic phenotypes, SCAMP3 expression was linked to increased fat mass and insulin resistance. Together, we identified a feed-forward loop through which miR-27a/b-3p, PPARG and SCAMP3 cooperatively fine tune the regulation of adipogenesis, which potentially may impact whole body metabolism.


Subject(s)
Adipogenesis/genetics , Carrier Proteins/genetics , Membrane Proteins/genetics , MicroRNAs/genetics , PPAR gamma/genetics , Adipocytes/physiology , Adipogenesis/physiology , Adipose Tissue/physiology , Body Mass Index , Cell Differentiation/genetics , Cell Differentiation/physiology , Cells, Cultured , Down-Regulation/genetics , Down-Regulation/physiology , Female , Humans , Insulin Resistance/genetics , Insulin Resistance/physiology , Lipogenesis/genetics , Lipogenesis/physiology , Phenotype , RNA, Messenger/genetics , Up-Regulation/genetics , Up-Regulation/physiology
11.
EBioMedicine ; 44: 467-475, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31151930

ABSTRACT

BACKGROUND: Abdominal fat mass is associated with metabolic risk whilst gluteal femoral fat is paradoxically protective. MicroRNAs are known to be necessary for adipose tissue formation and function but their role in regulating human fat distribution remains largely unexplored. METHODS: An initial microarray screen of abdominal subcutaneous and gluteal adipose tissue, with validatory qPCR, identified microRNA-196a as being strongly differentially expressed between gluteal and abdominal subcutaneous adipose tissue. FINDINGS: We found that rs11614913, a SNP within pre-miR-196a-2 at the HOXC locus, is an eQTL for miR-196a expression in abdominal subcutaneous adipose tissue (ASAT). Observations in large cohorts showed that rs11614913 increased waist-to-hip ratio, which was driven specifically by an expansion in ASAT. In further experiments, rs11614913 was associated with adipocyte size. Functional studies and transcriptomic profiling of miR-196a knock-down pre-adipocytes revealed a role for miR-196a in regulating pre-adipocyte proliferation and extracellular matrix pathways. INTERPRETATION: These data identify a role for miR-196a in regulating human body fat distribution. FUND: This work was supported by the Medical Research Council and Novo Nordisk UK Research Foundation (G1001959) and Swedish Research Council. We acknowledge the OBB-NIHR Oxford Biomedical Research Centre and the British Heart Foundation (BHF) (RG/17/1/32663). Work performed at the MRC Epidemiology Unit was funded by the United Kingdom's Medical Research Council through grants MC_UU_12015/1, MC_PC_13046, MC_PC_13048 and MR/L00002/1.


Subject(s)
Adipose Tissue/metabolism , Adiposity/genetics , Extracellular Matrix/genetics , Extracellular Matrix/metabolism , Gene Expression Regulation , MicroRNAs/genetics , Adipocytes/metabolism , Adult , Alleles , Cell Line , Female , Gene Expression Profiling , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide , Quantitative Trait Loci , RNA Interference , Signal Transduction , Transcriptome
12.
J Clin Endocrinol Metab ; 104(10): 4552-4562, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31132124

ABSTRACT

OBJECTIVE: Although IL-10 is generally considered as an anti-inflammatory cytokine, it was recently shown to have detrimental effects on insulin sensitivity and fat cell metabolism in rodents. Whether this also pertains to human white adipose tissue (hWAT) is unclear. We therefore determined the main cellular source and effects of IL-10 on human adipocytes and hWAT-resident immune cells and its link to insulin resistance. METHODS: Associations between hWAT IL-10 production and metabolic parameters were investigated in 216 participants with large interindividual variations in body mass index and insulin sensitivity. Adipose cells expressing or secreting IL-10 and the cognate IL-10 receptor α (IL10RA) were identified by flow cytometry sorting. Effects on adipogenesis, lipolysis, and inflammatory/metabolic gene expression were measured in two human primary adipocyte models. Secretion of inflammatory cytokines was investigated in cultures of IL-10-treated hWAT macrophages and leukocytes by Luminex analysis (Luminex Corp.). RESULTS: IL-10 gene expression and protein secretion in hWAT correlated positively with body mass index (BMI) and homeostasis model assessment-insulin resistance (HOMA-IR). Gene expression analyses in mature fat cells and flow cytometry-sorted hWAT-resident adipocyte progenitors, macrophages, and leukocytes demonstrated that the expression of IL-10 and the IL10RA were significantly enriched in proinflammatory M1 macrophages. In contrast to murine data, functional studies showed that recombinant IL-10 had no effect on adipocyte phenotype. In hWAT-derived macrophages and leukocytes, it induced an anti-inflammatory profile. CONCLUSION: In hWAT, IL-10 is upregulated in proinflammatory macrophages of obese and insulin-resistant persons. However, in contrast to findings in mice, IL-10 does not directly affect human adipocyte function.


Subject(s)
Adipose Tissue, White/metabolism , Insulin Resistance , Interleukin-10/metabolism , Macrophages/metabolism , Adipocytes, White/drug effects , Adipocytes, White/metabolism , Adipogenesis/drug effects , Adipogenesis/genetics , Adipose Tissue/metabolism , Adult , Case-Control Studies , Cells, Cultured , Female , Flow Cytometry , Gene Expression , Humans , In Vitro Techniques , Inflammation/genetics , Interleukin-10/pharmacology , Interleukin-10 Receptor alpha Subunit/metabolism , Intra-Abdominal Fat , Lipolysis/genetics , Mesenchymal Stem Cells/drug effects , Middle Aged , Obesity, Metabolically Benign , RNA, Messenger , Subcutaneous Fat , THP-1 Cells , Young Adult
13.
Nucleic Acids Res ; 47(9): e49, 2019 05 21.
Article in English | MEDLINE | ID: mdl-30793190

ABSTRACT

In most cells, transcriptionally inactive heterochromatin is preferentially localized in the nuclear periphery and transcriptionally active euchromatin is localized in the nuclear interior. Different cell types display characteristic chromatin distribution patterns, which change dramatically during cell differentiation, proliferation, senescence and different pathological conditions. Chromatin organization has been extensively studied on a cell population level, but there is a need to understand dynamic reorganization of chromatin at the single cell level, especially in live cells. We have developed a novel image analysis tool that we term Fluorescence Ratiometric Imaging of Chromatin (FRIC) to quantitatively monitor dynamic spatiotemporal distribution of euchromatin and total chromatin in live cells. A vector (pTandemH) assures stoichiometrically constant expression of the histone variants Histone 3.3 and Histone 2B, fused to EGFP and mCherry, respectively. Quantitative ratiometric (H3.3/H2B) imaging displayed a concentrated distribution of heterochromatin in the periphery of U2OS cell nuclei. As proof of concept, peripheral heterochromatin responded to experimental manipulation of histone acetylation. We also found that peripheral heterochromatin depended on the levels of the inner nuclear membrane protein Samp1, suggesting an important role in promoting peripheral heterochromatin. Taken together, FRIC is a powerful and robust new tool to study dynamic chromatin redistribution in live cells.


Subject(s)
Chromatin/genetics , Membrane Proteins/genetics , Molecular Imaging/methods , Nuclear Proteins/genetics , Acetylation , Cell Line , Cell Nucleus/genetics , Euchromatin/genetics , Heterochromatin/genetics , Histones/genetics , Humans , Nuclear Envelope/genetics , Protein Processing, Post-Translational/genetics
14.
Cell Rep ; 25(3): 551-560.e5, 2018 10 16.
Article in English | MEDLINE | ID: mdl-30332637

ABSTRACT

White adipose tissue (WAT) mass is determined by adipocyte size and number. While adipocytes are continuously turned over, the mechanisms controlling fat cell number in WAT upon weight changes are unclear. Herein, prospective studies of human subcutaneous WAT demonstrate that weight gain increases both adipocyte size and number, but the latter remains unaltered after weight loss. Transcriptome analyses associate changes in adipocyte number with the expression of 79 genes. This gene set is enriched for growth factors, out of which one, transforming growth factor-ß3 (TGFß3), stimulates adipocyte progenitor proliferation, resulting in a higher number of cells undergoing differentiation in vitro. The relevance of these observations was corroborated in vivo where Tgfb3+/- mice, in comparison with wild-type littermates, display lower subcutaneous adipocyte progenitor proliferation, WAT hypertrophy, and glucose intolerance. TGFß3 is therefore a regulator of subcutaneous adipocyte number and may link WAT morphology to glucose metabolism.


Subject(s)
Adipogenesis , Adipose Tissue, White/pathology , Glucose Intolerance/etiology , Obesity/complications , Subcutaneous Fat/pathology , Transforming Growth Factor beta3/physiology , Adipose Tissue, White/metabolism , Adolescent , Animals , Case-Control Studies , Cell Differentiation , Female , Glucose Intolerance/metabolism , Glucose Intolerance/pathology , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Prospective Studies , Subcutaneous Fat/metabolism
15.
Diabetes Obes Metab ; 20(10): 2416-2425, 2018 10.
Article in English | MEDLINE | ID: mdl-29862627

ABSTRACT

AIM: To examine the cell membrane transporters involved in mediating the antilipolytic effect of biguanides in human fat cells. MATERIALS AND METHODS: Gene expression of biguanide transporters was mapped in human subcutaneous adipose tissue and in adipocytes before and after differentiation. Those expressed in mature fat cells were knocked down by RNA interference (RNAi) and the antilipolytic effects of metformin and two novel, highly potent biguanides, NT1014 and NT1044, were examined. RESULTS: Analysis of the transporter affinity of biguanides in HEK293 cells overexpressing individual transporters showed that NT1014 and NT1044 had >10 times higher affinity than metformin. Animal studies showed that NT1014 was >5 times more potent than metformin in lowering plasma glucose in mice. In human fat cells, the novel biguanides displayed higher AMP-activated protein kinase activation and antilipolytic efficacy than metformin. Five transporters, organic cation transporter (OCT)1 (SLC22A1), organic cation transporter novel type 1 (OCTN1; SLC22A4), OCT3 (SLC22A3), plasma membrane monoamine transporter (PMAT; SLC29A4) and multidrug and toxin extrusion transporter (MATE1; SLC47A1), were detectable in fat cells but only OCT3, PMAT and MATE1 increased during adipogenesis in vitro and were enriched in fat cells compared with other adipose cell types. Gene knockdown by RNAi showed that MATE1 and PMAT reduction attenuated the antilipolytic effect of metformin but only PMAT knockdown decreased the effect of all three biguanides. CONCLUSIONS: While human fat cells primarily express three biguanide transporters, our data suggest that PMAT is the primary target for development of fat cell-specific antilipolytic biguanides with high sensitivity and potency.


Subject(s)
Adipocytes/metabolism , Biguanides/metabolism , Lipolysis/genetics , Organic Cation Transport Proteins/genetics , Organic Cation Transport Proteins/metabolism , Adipocytes/pathology , Adult , Aged , Animals , Biguanides/therapeutic use , Biological Transport/genetics , Cells, Cultured , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Female , Gene Expression Regulation , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Middle Aged , Tissue Distribution
16.
Diabetologia ; 61(5): 1112-1123, 2018 05.
Article in English | MEDLINE | ID: mdl-29487953

ABSTRACT

AIMS/HYPOTHESIS: By genome-wide association meta-analysis, 17 genetic loci associated with fasting serum insulin (FSI), a marker of systemic insulin resistance, have been identified. To define potential culprit genes in these loci, in a cross-sectional study we analysed white adipose tissue (WAT) expression of 120 genes in these loci in relation to systemic and adipose tissue variables, and functionally evaluated genes demonstrating genotype-specific expression in WAT (eQTLs). METHODS: Abdominal subcutaneous adipose tissue biopsies were obtained from 114 women. Basal lipolytic activity was measured as glycerol release from adipose tissue explants. Adipocytes were isolated and insulin-stimulated incorporation of radiolabelled glucose into lipids was used to quantify adipocyte insulin sensitivity. Small interfering RNA-mediated knockout in human mesenchymal stem cells was used for functional evaluation of genes. RESULTS: Adipose expression of 48 of the studied candidate genes associated significantly with FSI, whereas expression of 24, 17 and 2 genes, respectively, associated with adipocyte insulin sensitivity, lipolysis and/or WAT morphology (i.e. fat cell size relative to total body fat mass). Four genetic loci contained eQTLs. In one chromosome 4 locus (rs3822072), the FSI-increasing allele associated with lower FAM13A expression and FAM13A expression associated with a beneficial metabolic profile including decreased WAT lipolysis (regression coefficient, R = -0.50, p = 5.6 × 10-7). Knockdown of FAM13A increased lipolysis by ~1.5-fold and the expression of LIPE (encoding hormone-sensitive lipase, a rate-limiting enzyme in lipolysis). At the chromosome 7 locus (rs1167800), the FSI-increasing allele associated with lower POM121C expression. Consistent with an insulin-sensitising function, POM121C expression associated with systemic insulin sensitivity (R = -0.22, p = 2.0 × 10-2), adipocyte insulin sensitivity (R = 0.28, p = 3.4 × 10-3) and adipose hyperplasia (R = -0.29, p = 2.6 × 10-2). POM121C knockdown decreased expression of all adipocyte-specific markers by 25-50%, suggesting that POM121C is necessary for adipogenesis. CONCLUSIONS/INTERPRETATION: Gene expression and adipocyte functional studies support the notion that FAM13A and POM121C control adipocyte lipolysis and adipogenesis, respectively, and might thereby be involved in genetic control of systemic insulin sensitivity.


Subject(s)
GTPase-Activating Proteins/genetics , Genome-Wide Association Study , Insulin/metabolism , Membrane Glycoproteins/genetics , Adipocytes/metabolism , Adipogenesis , Adipose Tissue/metabolism , Adiposity , Adult , Fasting , Female , Follow-Up Studies , Genotype , Glucose/metabolism , Humans , Insulin Resistance , Lipolysis , Middle Aged , Obesity/metabolism , Oligonucleotide Array Sequence Analysis , Phenotype , Quantitative Trait Loci , Sweden
17.
Mol Cell Endocrinol ; 472: 50-56, 2018 09 05.
Article in English | MEDLINE | ID: mdl-29191698

ABSTRACT

Reduced adipose expression of the transcription factor Early B cell factor 1 (EBF1) is linked to white adipose tissue (WAT) hypertrophy. We aimed to identify microRNAs (miRNAs) associated with WAT hypertrophy and EBF1 regulation. We mapped WAT miRNA expression from 26 non-obese women discordant in WAT morphology and determined EBF1 activity in the non-obese and 30 obese women. Expression of 15 miRNAs was higher in hypertrophy and 10 were predicted to target EBF1. Binding of miR-365-5p/miR-574-5p were validated with 3'-UTR assay. Overexpression of miR-365-5p or miR-574-5p reduced EBF1 while inhibition of miR-574 increased EBF1 expression in human adipocytes in vitro. Additive effects on EBF1 were observed when concomitantly overexpressing both miRNAs. EBF1 targets were affected by over expression/inhibition of either miRNAs. Finally, miR-365-5p/miR-574-5p expression in 56 individuals correlated significantly with EBF1 activity. Our results suggest that miR-365-5p and miR-574-5p may be linked to WAT hypertrophy via effects on EBF1 expression.


Subject(s)
Adipose Tissue, White/anatomy & histology , Adipose Tissue, White/metabolism , Gene Expression Regulation , MicroRNAs/metabolism , Trans-Activators/genetics , Adipocytes/metabolism , Adipocytes/pathology , Cell Differentiation/genetics , Female , Humans , Hypertrophy , MicroRNAs/genetics , Reproducibility of Results , Trans-Activators/metabolism
18.
Sci Rep ; 7(1): 10152, 2017 08 31.
Article in English | MEDLINE | ID: mdl-28860604

ABSTRACT

Increased adipocyte lipolysis links obesity to insulin resistance. The lipid droplet coating-protein Perilipin participates in regulation of lipolysis and is implicated in obesity. In the present study we investigate epigenetic regulation of the PLIN1 gene by correlating PLIN1 CpG methylation to gene expression and lipolysis, and functionally evaluating PLIN1 promoter methylation. PLIN1 CpG methylation in adipocytes and gene expression in white adipose tissue (WAT) was quantified in two cohorts by array. Basal lipolysis in WAT explants and adipocytes was quantified by measuring glycerol release. CpG-methylation of the PLIN1 promoter in adipocytes from obese women was higher as compared to never-obese women. PLIN1 promoter methylation was inversely correlated with PLIN1 mRNA expression and the lipolytic activity. Human mesenchymal stem cells (hMSCs) differentiated in vitro into adipocytes and harboring methylated PLIN1 promoter displayed decreased reporter gene activity as compared to hMSCs harboring unmethylated promoter. Treatment of hMSCs differentiated in vitro into adipocytes with a DNA methyltransferase inhibitor increased levels of PLIN1 mRNA and protein. In conclusion, the PLIN1 gene is epigenetically regulated and promoter methylation is inversely correlated with basal lipolysis in women suggesting that epigenetic regulation of PLIN1 is important for increased adipocyte lipolysis in insulin resistance states.


Subject(s)
Epigenesis, Genetic , Lipolysis , Obesity/genetics , Perilipin-1/genetics , Adipocytes, White/cytology , Adipocytes, White/metabolism , Adult , CpG Islands , DNA Methylation , Female , Glycerol/metabolism , Humans , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Middle Aged , Obesity/metabolism , Perilipin-1/metabolism
19.
PLoS One ; 12(6): e0178485, 2017.
Article in English | MEDLINE | ID: mdl-28570579

ABSTRACT

Although the mechanisms linking obesity to insulin resistance (IR) and type 2 diabetes (T2D) are not entirely understood, it is likely that alterations of adipose tissue function are involved. The aim of this study was to identify new genes controlling insulin sensitivity in adipocytes from obese women with either insulin resistant (OIR) or sensitive (OIS) adipocytes. Insulin sensitivity was first determined by measuring lipogenesis in isolated adipocytes from abdominal subcutaneous white adipose tissue (WAT) in a large observational study. Lipogenesis was measured under conditions where glucose transport was the rate limiting step and reflects in vivo insulin sensitivity. We then performed microarray-based transcriptome profiling on subcutaneous WAT specimen from a subgroup of 9 lean, 21 OIS and 18 obese OIR women. We could identify 432 genes that were differentially expressed between the OIR and OIS group (FDR ≤5%). These genes are enriched in pathways related to glucose and amino acid metabolism, cellular respiration, and insulin signaling, and include genes such as SLC2A4, AKT2, as well as genes coding for enzymes in the mitochondria respiratory chain. Two IR-associated genes, KLF15 encoding a transcription factor and SLC25A10 encoding a dicarboxylate carrier, were selected for functional evaluation in adipocytes differentiated in vitro. Knockdown of KLF15 and SLC25A10 using siRNA inhibited insulin-stimulated lipogenesis in adipocytes. Transcriptome profiling of siRNA-treated cells suggested that KLF15 might control insulin sensitivity by influencing expression of PPARG, PXMP2, AQP7, LPL and genes in the mitochondrial respiratory chain. Knockdown of SLC25A10 had only modest impact on the transcriptome, suggesting that it might directly influence insulin sensitivity in adipocytes independently of transcription due to its important role in fatty acid synthesis. In summary, this study identifies novel genes associated with insulin sensitivity in adipocytes in women independently of obesity. KFL15 and SLC25A10 are inhibitors of insulin-stimulated lipogenesis under conditions when glucose transport is the rate limiting step.


Subject(s)
Adipocytes/metabolism , Dicarboxylic Acid Transporters/genetics , Gene Expression Profiling , Insulin Resistance , Kruppel-Like Transcription Factors/genetics , Obesity/metabolism , Transcriptome , Adult , Female , Gene Knockdown Techniques , Humans , Middle Aged
20.
Am J Physiol Endocrinol Metab ; 312(6): E482-E494, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28270439

ABSTRACT

The key pathological link between obesity and type 2 diabetes is insulin resistance, but the molecular mechanisms are not entirely identified. micro-RNAs (miRNA) are dysregulated in obesity and may contribute to insulin resistance. Our objective was to detect and functionally investigate miRNAs linked to insulin sensitivity in human subcutaneous white adipose tissue (scWAT). Subjects were selected based on the insulin-stimulated lipogenesis response of subcutaneous adipocytes. Global miRNA profiling was performed in abdominal scWAT of 18 obese insulin-resistance (OIR), 21 obese insulin-sensitive (OIS), and 9 lean women. miRNAs demonstrating differential expression between OIR and OIS women were overexpressed in human in vitro-differentiated adipocytes followed by assessment of lipogenesis and identification of miRNA targets by measuring mRNA/protein expression and 3'-untranslated region analysis. Eleven miRNAs displayed differential expression between OIR and OIS states. Overexpression of miR-143-3p and miR-652-3p increased insulin-stimulated lipogenesis in human in vitro differentiated adipocytes and directly or indirectly affected several genes/proteins involved in insulin signaling at transcriptional or posttranscriptional levels. Adipose expression of miR-143-3p and miR-652-3p was positively associated with insulin-stimulated lipogenesis in scWAT independent of body mass index. In conclusion, miR-143-3p and miR-652-3p are linked to scWAT insulin resistance independent of obesity and influence insulin-stimulated lipogenesis by interacting at different steps with insulin-signaling pathways.


Subject(s)
Gene Expression Regulation , Insulin Resistance , MicroRNAs/metabolism , Obesity, Morbid/metabolism , Obesity/metabolism , Subcutaneous Fat, Abdominal/metabolism , 3' Untranslated Regions , Adult , Biopsy , Body Mass Index , Cells, Cultured , Cohort Studies , Female , Gene Expression Profiling , Humans , Lipogenesis , Male , MicroRNAs/agonists , Middle Aged , Obesity/pathology , Obesity, Morbid/pathology , RNA/metabolism , Subcutaneous Fat, Abdominal/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...