Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Negl Trop Dis ; 18(2): e0011957, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38363794

ABSTRACT

BACKGROUND: Lymphatic filariasis (LF) is a parasitic disease transmitted by mosquitoes, causing severe pain, disfiguring, and disabling clinical conditions such as lymphoedema and hydrocoele. LF is a global public health problem affecting 72 countries, primarily in Africa and Asia. Since 2000, the World Health Organization (WHO) has led the Global Programme to Eliminate Lymphatic Filariasis (GPELF) to support all endemic regions. This paper focuses on the achievements of the Malawi LF Elimination Programme between 2000 and 2020 to eliminate LF as a public health problem, making it the second sub-Saharan country to receive validation from the WHO. METHODOLOGY/PRINCIPAL FINDINGS: The Malawi LF Programme addressed the widespread prevalence of LF infection and disease across the country, using the recommended WHO GPELF strategies and operational research initiatives in collaboration with key national and international partners. First, to stop the spread of infection (i.e., interrupt transmission) and reduce the circulating filarial antigen prevalence from as high as 74.4% to below the critical threshold of 1-2% prevalence, mass drug administration (MDA) using a two-drug regime was implemented at high coverage rates (>65%) of the total population, with supplementary interventions from other programmes (e.g., malaria vector control). The decline in prevalence was monitored and confirmed over time using several impact assessment and post-treatment surveillance tools including the standard sentinel site, spot check, and transmission assessment surveys and alternative integrated, hotspot, and easy-access group surveys. Second, to alleviate suffering of the affected populations (i.e., control morbidity) the morbidity management and disability prevention (MMDP) package of care was implemented. Specifically, clinical case estimates were obtained via house-to-house patient searching activities; health personnel and patients were trained in self-care protocols for lymphoedema and/or referrals to hospitals for hydrocoele surgery; and the readiness and quality of treatment and services were assessed with new survey tools. CONCLUSIONS: Malawi's elimination of LF will ensure that future generations are not infected and suffer from the disfiguring and disabling disease. However, it will be critical that the Malawi LF Elimination programme remains vigilant, focussing on post-elimination surveillance and MMDP implementation and integration into routine health systems to support long-term sustainability and ongoing success. SUMMARY: Lymphatic filariasis, also known as elephantiasis, is a disabling, disfiguring, and painful disease caused by a parasite that infected mosquitoes transmit to millions of people worldwide. Since 2000, the Global Programme to Eliminate Lymphatic Filariasis (GPELF) has supported endemic countries such as Malawi in south-eastern Africa, to eliminate the disease as a public health problem. The Malawi National LF Elimination Programme has worked tirelessly over the past two decades to implement the GPELF recommended strategies to interrupt the transmission with a two-drug regime, and to alleviate suffering in patients with lymphoedema and/or hydrocoele through morbidity management and disability prevention. Additionally, the LF Programme has collaborated with national and international stakeholders to implement a range of supplementary operational research projects to address outstanding knowledge gaps and programmatic barriers. In 2020, the World Health Organisation validated that Malawi had successfully eliminated LF as a public health problem, making it the second country in sub-Saharan Africa to achieve this, which is remarkable given that Malawi previously had very high infection rates. The LF Programme now remains vigilant, putting its efforts towards post-elimination surveillance and the continued implementation of care for patients with chronic conditions. Malawi's elimination of LF will ensure that future generations are not affected by this devastating disease.


Subject(s)
Anopheles , Elephantiasis, Filarial , Lymphedema , Malaria , Animals , Humans , Elephantiasis, Filarial/drug therapy , Elephantiasis, Filarial/epidemiology , Elephantiasis, Filarial/prevention & control , Public Health , Malawi/epidemiology , Mosquito Vectors , Blindness
2.
Parasit Vectors ; 15(1): 220, 2022 Jun 21.
Article in English | MEDLINE | ID: mdl-35729623

ABSTRACT

BACKGROUND: Malaria vector control using insecticide-based approaches has proven to be an effective strategy. However, widespread insecticide resistance among malaria vector populations across sub-Saharan Africa threatens to derail control efforts. This study was conducted in Chikwawa district, an area in rural southern Malawi characterised by persistent malaria transmission and reports of insecticide resistance in the local mosquito population. The aim of the was to characterise the intensity of insecticide resistance within a population of Anopheles funestus sensu lato (s.l.), a major vector of malaria in this district. METHODS: Live adult females belonging to the An. funestus group were collected from households by indoor aspiration. The CDC bottle assay was used for phenotypic quantification of resistance to deltamethrin, permethrin and alpha-cypermethrin at 1×, 2.5×, 5× and 10× the recommended diagnostic dose for each of these insecticides. WHO tube assays were used to determine susceptibility to bendiocarb, dichlorodiphenyltrichloroethane (DDT) and pirimiphos-methyl insecticides at diagnostic concentrations. RESULTS: Anopheles funestus s.l. exposed to 10× the recommended diagnostic dose was highly resistant to alpha-cypermethrin (mortality 95.4%); in contrast, mortality was 100% when exposed to both deltamethrin and permethrin at the same dose. Despite showing susceptibility to deltamethrin and permethrin at the 10× concentration, mortality at the 5× concentration was 96.7% and 97.1%, respectively, indicating moderate resistance to these two insecticides. WHO susceptibility assays indicated strong resistance against bendiocarb (mortality 33.8%, n = 93), whereas there was full susceptibility to DDT (mortality 98.9%, n = 103) and pirimiphos-methyl (mortality 100%, n = 103). CONCLUSIONS: Strategies for managing resistance to insecticides, particularly against pyrethroids, must be urgently implemented to maintain the effectiveness of insecticide-based vector control interventions in the area. Such strategies include the wide-scale introduction of third-generation synergist insecticide-treated bed nets (ITNs) and next-generation dual active ingredient ITNs. The use of effective non-pyrethroids, such as pirimiphos-methyl, clothianidin and potentially DDT, could provide a window of opportunity for indoor residual spraying across the district. This strategy would support the current Malawi Insecticide Resistance Management Plan which aims at rotating insecticides to minimise selection pressure and slow down the evolution of resistance to approved insecticides. These actions will help to prevent malaria vector control failure and improve progress towards malaria elimination.


Subject(s)
Anopheles , Insecticides , Malaria , Pyrethrins , Animals , DDT/pharmacology , Female , Insecticide Resistance , Insecticides/pharmacology , Malaria/prevention & control , Malawi , Mosquito Control , Mosquito Vectors , Permethrin/pharmacology , Pyrethrins/pharmacology
3.
Acta Trop ; 213: 105742, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33159897

ABSTRACT

We conducted a nationwide survey of mosquito distribution in Malawi from November 2011 to April 2012, and from July to September 2012. Using dried specimens of mosquito adults collected during the survey, we analyzed their cytochrome c oxidase subunit I (COI) gene sequences, prepared specimens, and registered the genetic information (658 bp) of 144 individuals belonging to 51 species of 10 genera in GenBank. Using the obtained genetic information, we analyzed the degree of intraspecific variation and investigated the various species from morphological and genetic perspectives. Moreover, we conducted phylogenetic analysis of the medically important species distributed from Africa to Asia and explored their geographical differentiation. Results showed that individuals morphologically classified as Culex univittatus complex included a individual of Cx. perexiguus which, to date, have not been reported in southern Africa. Furthermore, Mansonia uniformis, distributed in Africa and Asia, was revealed to belong to genetically distinct populations, with observed morphological differences of the samples suggesting that they are separate species. The results of genetic analysis further suggested that Cx. ethiopicus is not a synonym of Cx. bitaeniorhynchus, but that it is an independent species; although, in this study, the only definite morphological difference observed was in the shape of the wing scales. Further morphological and genetic investigation of individuals of these species, including larvae, is highly recommended.


Subject(s)
Culicidae/classification , DNA Barcoding, Taxonomic , Africa, Southern , Animals , Asia , Culex/classification , Culex/genetics , Culicidae/genetics , Electron Transport Complex IV/genetics , Genetics, Population , Insect Proteins/genetics , Malawi , Phylogeny , Surveys and Questionnaires
SELECTION OF CITATIONS
SEARCH DETAIL
...