Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 215
Filter
1.
Protein Expr Purif ; 223: 106559, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39089400

ABSTRACT

We have functionally characterized the high-affinity phosphate transporter (PiPT) from the root endophyte fungus Piriformospora indica. PiPT belongs to the major facilitator superfamily (MFS). PiPT protein was purified by affinity chromatography (Ni-NTA) and Size Exclusion Chromatography (SEC). The functionality of solubilized PiPT was determined in detergent-solubilized state by fluorescence quenching and in proteoliposomes. In the fluorescence quenching assay, PiPT exhibited a saturation concentration of approximately 2 µM, at a pH of 4.5. Proteoliposomes of size 121.6 nm radius, showed transportation of radioactive phosphate. Vmax was measured to be 232.2 ± 11 pmol/min/mg protein. We have found Km to be 45.8 ± 6.2 µM suggesting high affinity towards phosphate.


Subject(s)
Basidiomycota , Phosphate Transport Proteins , Basidiomycota/metabolism , Basidiomycota/chemistry , Phosphate Transport Proteins/metabolism , Phosphate Transport Proteins/genetics , Phosphate Transport Proteins/chemistry , Fungal Proteins/chemistry , Fungal Proteins/isolation & purification , Fungal Proteins/metabolism , Endophytes/metabolism , Endophytes/chemistry , Plant Roots/microbiology , Plant Roots/chemistry , Phosphates/metabolism , Phosphates/chemistry
2.
Eur J Pharmacol ; : 176902, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39153648

ABSTRACT

AIM: The current study explores niclosamide's neuroprotective potential in an animal model of autism spectrum disorder (ASD) and goes further to understand how the ERK/MAPK signaling pathway is thought to contribute to this activity. METHODS: In order to create an autism-like phenotype in rats, 4 µl of 1 M PPA was infused intracerebroventricularly. The oral treatment with niclosamide (50 and 100 mg/kg) and risperidone (1 mg/kg) (used as standard) was given from 3rd to 30th day. Between the 14th and 28th day, behavioral assessments were made for sociability, stereotypy, anxiety, depression, novelty preference, repetitive behavior, and perseverative behavior. The animals were euthanized on the 29th day, and oxidative stress markers were assessed in the brain homogenate. The levels of neuroinflammatory cytokines such as TNF-α, IL-6, NF-κB, IFN-γ and glutamate were estimated using ELISA kits. To assess the involvement of the ERK/MAPK signaling pathway, levels of Nrf2 and ERK2 were also measured. KEY FINDINGS: Niclosamide therapy significantly restored behavioral, biochemical, neurological, and molecular impairments. Hence, niclosamide could be a potential neurotherapeutic candidate for further studies for use in ASD.

3.
MethodsX ; 13: 102839, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39105091

ABSTRACT

Melanoma is a type of skin cancer that poses significant health risks and requires early detection for effective treatment. This study proposing a novel approach that integrates a transformer-based model with hand-crafted texture features and Gray Wolf Optimization, aiming to enhance efficiency of melanoma classification. Preprocessing involves standardizing image dimensions and enhancing image quality through median filtering techniques. Texture features, including GLCM and LBP, are extracted to capture spatial patterns indicative of melanoma. The GWO algorithm is applied to select the most discriminative features. A transformer-based decoder is then employed for classification, leveraging attention mechanisms to capture contextual dependencies. The experimental validation on the HAM10000 dataset and ISIC2019 dataset showcases the effectiveness of the proposed methodology. The transformer-based model, integrated with hand-crafted texture features and guided by Gray Wolf Optimization, achieves outstanding results. The results showed that the proposed method performed well in melanoma detection tasks, achieving an accuracy and F1-score of 99.54% and 99.11% on the HAM10000 dataset, and an accuracy of 99.47%, and F1-score of 99.25% on the ISIC2019 dataset. • We use the concepts of LBP and GLCM to extract features from the skin lesion images. • The Gray Wolf Optimization (GWO) algorithm is employed for feature selection. • A decoder based on Transformers is utilized for melanoma classification.

4.
Arch Microbiol ; 206(9): 369, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39110213

ABSTRACT

The RNA-based study provides an excellent indication of an organism's gene expression profile. Obtaining high-yield and high-purity RNA from Gram-positive and acid-fast bacteria is difficult without high-end kits and facilities. We optimised effective and simple protocol for RNA isolation that is a combination of enzymatic, physical and chemical treatment to disrupt cells. We successfully isolated high quality intact total RNA with yields ranging from 23.13 ± 0.40 to 61.51 ± 0.27 µg and the 260/280 purity ratio of 1.95 ± 0.01 to 2.05 ± 0.01 from Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, and Mycobacterium smegmatis. These results represents a significantly enhanced yield and purity compared to other combination of techniques which we performed. Compared to previous studies the yield obtained by this method is high for the studied organisms. Furthermore the yielded RNA was successfully used for downstream applications such as quantitative real time PCR. The described method can be easily optimised and used for various bacteria.


Subject(s)
RNA, Bacterial , RNA, Bacterial/genetics , RNA, Bacterial/isolation & purification , Staphylococcus aureus/genetics , Staphylococcus aureus/isolation & purification , Gram-Positive Bacteria/genetics , Gram-Positive Bacteria/isolation & purification , Staphylococcus epidermidis/genetics , Staphylococcus epidermidis/isolation & purification , Enterococcus faecalis/genetics , Enterococcus faecalis/isolation & purification , Mycobacterium smegmatis/genetics
5.
Bone Rep ; 22: 101784, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39040156

ABSTRACT

Intervertebral Disc Degeneration is a pathophysiological condition that primarily affects the spinal discs, causing back pain and neurological deficits. It is caused by the contribution of several factors such as genetic predisposition, age-related degeneration, and lifestyle choices like obesity and physical activity. Even though there are medications to treat pain, there is a lack of medicines for a complete cure. The main difficulty lies in poor diagnosis of the morphological and functional changes in the disc. With the ever-increasing research on bioimaging techniques, new techniques are being developed and repurposed to evaluate disc shape and composition, and their defects like thinning or deformities on the disc, leading to the proper diagnostic intervention in intervertebral disc degeneration. In this review, we aim to present a comprehensive overview of the imaging techniques used in the pre-clinical and clinical stages for the diagnosis of intervertebral disc degeneration. First, we will discuss about patho-anatomy and the pathophysiology of degenerative disc disease with the significance and a brief description of various dyes and tracers utilized for bioimaging. Then we will shed light on the latest advancements in diagnostic modalities in intervertebral disc degeneration; concluded by an analysis of the repercussions of the methodologies and experimental systems employed in identifying mechanisms and developing therapeutic strategies in intervertebral disc degeneration.

6.
ACS Chem Neurosci ; 15(13): 2454-2469, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38896463

ABSTRACT

Parkinson's disease, a classical motor disorder affecting the dopaminergic system of the brain, has been as a disease of the brain, but this classical notion has now been viewed differently as the pathology begins in the gut and then gradually moves up to the brain regions. The microorganisms in the gut play a critical role in maintaining the physiology of the gut from maintaining barrier integrity to secretion of microbial products that maintain a healthy gut state. The pathology subsequently alters the normal composition of gut microbes and causes deleterious effects that ultimately trigger strong neuroinflammation and nonmotor symptoms along with characteristic synucleopathy, a pathological hallmark of the disease. Understanding the complex pathomechanisms in distinct and established preclinical models is the primary goal of researchers to decipher how exactly gut pathology has a central effect; the quest has led to many answered and some open-ended questions for researchers. We summarize the popular opinions and some contrasting views, concise footsteps in the treatment strategies targeting the gastrointestinal system.


Subject(s)
Brain-Gut Axis , Brain , Gastrointestinal Microbiome , Parkinson Disease , Humans , Parkinson Disease/metabolism , Gastrointestinal Microbiome/physiology , Animals , Brain-Gut Axis/physiology , Brain/metabolism
7.
Expert Opin Drug Metab Toxicol ; 20(6): 529-539, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38712502

ABSTRACT

BACKGROUND: Antiretrovirals have the potential to cause drug interactions leading to inefficacy or toxicity via induction of efflux transporters through nuclear receptors, altering drug concentrations at their target sites. RESEARCH DESIGN AND METHODS: This study used molecular dynamic simulations and qRT-PCR to investigate bictegravir's interactions with nuclear receptors PXR and CAR, and its effects on efflux transporters (P-gp, BCRP, MRP1) in rat PBMCs. PBMC/plasma drug concentrations were measured using LC-MS/MS to assess the functional impact of transporter expression. RESULTS: Bictegravir significantly increased the expression of ABC transporters, with Car identified as a key mediator. This suggests that bictegravir's influence on nuclear receptors could affect drug transport and efficacy at the cellular level. CONCLUSIONS: Bictegravir activates nuclear receptors enhancing efflux transporter expression. Understanding these interactions is crucial for preventing drug-drug interactions and reducing toxicity in clinical use. Combining CAR antagonists with bictegravir may prevent drug resistance and toxicity. However, these findings are based on preclinical data and necessitate further clinical trials to confirm their applicability in clinical settings.


Subject(s)
Drug Interactions , Heterocyclic Compounds, 4 or More Rings , Leukocytes, Mononuclear , Tandem Mass Spectrometry , Animals , Rats , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/drug effects , Male , Heterocyclic Compounds, 4 or More Rings/pharmacology , Heterocyclic Compounds, 4 or More Rings/pharmacokinetics , Heterocyclic Compounds, 3-Ring/pharmacology , Heterocyclic Compounds, 3-Ring/pharmacokinetics , Heterocyclic Compounds, 3-Ring/administration & dosage , Piperazines/pharmacology , Pregnane X Receptor/genetics , Pregnane X Receptor/metabolism , Molecular Dynamics Simulation , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Multidrug Resistance-Associated Proteins/genetics , Multidrug Resistance-Associated Proteins/metabolism , Gene Expression Regulation/drug effects , Constitutive Androstane Receptor , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Chromatography, Liquid/methods , Rats, Sprague-Dawley , Dioxolanes/pharmacology , Dioxolanes/pharmacokinetics , Dioxolanes/administration & dosage , Amides , Pyridones
8.
Chem Asian J ; 19(15): e202400138, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38733617

ABSTRACT

The aminotroponiminate (ATI) ligand stabilized germylene cation [(i-Bu)2ATIGe][B(C6F5)4] (2) is found to be an efficient low-valent main-group catalyst for the cyanosilylation of aldehydes and ketones (ATI=aminotroponiminate). It was synthesized by reacting [(i-Bu)2ATIGeCl] (1) with Na[B(C6F5)4]. The catalytic cyanosilylation of diverse aliphatic and aromatic carbonyl compounds (aldehydes and ketones) using 0.075-0.75 mol% of compound 2 was completed within 5-45 min. The catalytic efficiency seen with aliphatic aldehydes was around 15,800 h-1, making compound 2 a capable low-valent main-group catalyst for the aldehyde and ketone cyanosilylation reactions. Further, DFT calculations reveal a pronounced charge localization at the germanium atom of compound 2, leading to its superior catalytic performance.

9.
Langmuir ; 40(23): 11988-11997, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38787896

ABSTRACT

Demulsification of particle-stabilized oil-in-water emulsions is crucial in diverse fields such as treatment of produce water, recovery of valuable products of Pickering emulsion catalysis, and so on. In this work, we investigated a facile method for destabilizing emulsions by dissolving stabilizer particles by the introduction of acid or base. Nanoellipsoidal hematite-stabilized decane-in-water emulsions are destabilized by dissolving hematite with oxalic or hydrochloric acid in situ. Time required for complete demulsification decreased as the acid concentration is increased. The demulsification time is typically on the order of a few hours for the chosen protocol. Similarly, the silica-stabilized decane-water emulsion is demulsified by the addition of aqueous sodium hydroxide. Demulsification kinetics is presented as the temporal change of the emulsion volume with time. Emulsion volume decreases in two stages: an initial slow decrease followed by an exponential decrease. Scanning electron microscopy analysis shows that the stabilizing particles are completely dissolved and recrystallized as salts of respective kinds. An estimate of the desorption free energy suggests that particle size should be reduced to a few nanometers for inducing destabilization. This work describes a facile method to destabilize oil-in-water emulsion, and it can be generalized to any other particle-stabilized emulsions by choosing appropriate chemical reagent for dissolution.

10.
Pol J Pathol ; 75(1): 25-35, 2024.
Article in English | MEDLINE | ID: mdl-38808606

ABSTRACT

Small cell lung carcinoma (SCLC) is characterized by rapid growth and an aggressive clinical course. Standard therapy regimes have limited effects on disease course; therefore the prognosis of SCLC is poor. In the current study, the frequency of programmed death ligand 1 (PD-L1) expression in SCLC and its correlation with clinico-pathological features were evaluated. The study included 100 cases of SCLC wherein testing for PD-L1 was done with the SP263 clone on the Ventana benchmark XT system. Cases with > 1% PD-L1 expression in tumour cells or immune cells were categorized as positive. PD-L1 expression was identified in 14% of cases using the cut-off of ≥ 1%. The tumour proportion score was 10% and the immune proportion score was 9.78% using a cut-off of ≥ 1%. PD-L1 positive expression was more frequent in the male population with age > 40 years. All the patients with positive PD-L1 expression were smokers. In the PD-L1 positive group, presence of necrosis was identified in 71.4% of cases and when compared with the PD-L1 negative subgroup this finding was statistically significant (p = 0.010). Personalized targeted therapy for cases of SCLC is still under evaluation. The use of immunotherapeutic targets, such as PD-L1, may help to define a new treatment strategy for SCLC. Development of new treatment strategies may improve prognosis and survival.


Subject(s)
B7-H1 Antigen , Biomarkers, Tumor , Lung Neoplasms , Small Cell Lung Carcinoma , Humans , B7-H1 Antigen/metabolism , B7-H1 Antigen/analysis , Male , Small Cell Lung Carcinoma/pathology , Small Cell Lung Carcinoma/metabolism , Female , Middle Aged , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Adult , Aged , Biomarkers, Tumor/analysis , Biomarkers, Tumor/metabolism , Aged, 80 and over , Immunohistochemistry , Prognosis
11.
Nanoscale ; 16(19): 9235-9258, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38669162

ABSTRACT

Nanoscale self-powered photodetectors that can work without any external source of energy are required for future applications. There is potential demand for these devices in areas like wireless surveillance, weather forecasting, remote monitoring, and places where the availability of power is scarce. This study provides an overview of state of the art research trends and improvements in self-powered photodetectors. A device engineering perspective for improvement in the figures of merit has been presented along with a description of additional effects like pyro-phototronic, piezo-phototronic, and surface plasmonics.

12.
Langmuir ; 40(15): 7860-7870, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38557075

ABSTRACT

We present a modular single-step strategy for the formation of single and Pickering double emulsions (DEs). To this end, we consider the role of surface modification of particles and their dispersibility in different phases in the context of the design of Pickering emulsions by varying the volume fraction of oil in the oil-water mixture (ϕoil) used for emulsification. In particular, the experiments are performed by considering (a) model spherical and nonspherical colloids of different wettabilities which are tailored by oleic acid treatment, (b) immiscible liquids with or without particles, and (c) varying ϕoil from 0.1 to 0.9. We show that it is possible to affect a transition from (i) oil-in-water (O/W) emulsion to water-in-oil (W/O) emulsion and (ii) oil-in-water (O/W) to oil-in-water-in-oil (O/W/O) to water-in-oil (W/O) as ϕoil is systematically varied. We elucidate that the range of ϕoil at which particle stabilized DEs of the O/W/O type form can be tuned by engineering surface modification of particles to different extents. Furthermore, the arrangement of particles on the surface of droplets in the Pickering DEs is discussed. Our results conclusively establish that the differential wettability of particles is the key for the design of Pickering DEs. The versatility of the proposed strategy is established by developing DEs using a number of model colloidal systems.

13.
Drug Discov Today ; 29(5): 103949, 2024 May.
Article in English | MEDLINE | ID: mdl-38492882

ABSTRACT

Pyruvate kinase M2 (PKM2) is a key glycolytic enzyme that regulates proliferating cell metabolism. The role of PKM2 in common diseases has been well established, but its role in rare diseases (RDs) is less understood. Over the past few years, PKM2 has emerged as a crucial player in RDs, including, neoplastic, respiratory, metabolic, and neurological disorders. Herein, we summarize recent findings and developments highlighting PKM2 as an emerging key player in RDs. We also discuss the current status of PKM2 modulation in RDs with particular emphasis on preclinical and clinical studies in addition to current challenges in the field.


Subject(s)
Rare Diseases , Humans , Animals , Rare Diseases/drug therapy , Thyroid Hormone-Binding Proteins , Pyruvate Kinase/metabolism , Thyroid Hormones/metabolism , Membrane Proteins/metabolism , Carrier Proteins/metabolism
14.
ACS Pharmacol Transl Sci ; 7(3): 667-679, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38481685

ABSTRACT

The spinal cord injury (SCI) and the neurodegenerative processes accompanying it follow an intricate pathway with very limited options for treatment strategies until now. Microtubules, essential for the growth and maintenance of neurons, are mostly disorganized and destabilized due to neurodegeneration. Regeneration or plasticity is restricted to the adult central nervous system (CNS) due to several intrinsic and extrinsic mechanisms. Some fundamental or injury-induced expressions of specific molecules can be inhibited or antagonized pharmacologically to protect neurons to a certain extent after neurodegeneration. Accordingly, these molecules offer an excellent target as a therapeutic approach to promote neuroprotection. LIM kinases (LIMKs) are one of these molecules that phosphorylates members of the actin-depolymerizing factor (ADF)/cofilin family of actin-binding and filament-severing proteins. The individual role of LIMKs has not yet been studied in the pathology of SCI. In this study, we targeted LIMK and checked its role in microtubule destabilization in vitro. LIMK1 was found to be upregulated after microtubule depolymerization and inhibition of LIMK with specific inhibitor-protected neurons. Then, we checked the expressions of individual LIMKs throughout different time points across SCI in a rat contusion model, correlating with established pathophysiological markers. The phosphorylated form of LIMK1 was found to be elevated at chronic time points after injury, where scar formation and diminution of neurons prevail. Finally, we targeted the LIMK pathway with its specific inhibitor BMS-5, which showed neuroprotection after SCI. Overall, our results provided a concept concerning how a small-molecule inhibitor of LIMK may offer a strategy to treat SCI-associated neurodegeneration.

15.
Nat Nanotechnol ; 19(6): 766-774, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38388966

ABSTRACT

Incorporating structural coloured materials in flexible and stretchable elastomeric substrates requires numerous steps that compromise their scalability and economic viability for prospective applications in visual sensors and displays. Here we describe a one-step approach for fabricating plasmonic Ga nanostructures embedded in a polydimethylsiloxane substrate exhibiting tunable chromaticity, in response to mechanical stimuli. The process exploits the capillary interactions between uncrosslinked oligomeric chains of the substrate and Ga metal deposited by thermal evaporation, as elucidated by a theoretical model that we developed. By tuning the oligomer content in polydimethylsiloxane, we attain a range of colours covering a substantial gamut in CIE (Commission Internationale de l'Éclairage) coordinates. This mechanochromic flexible substrate shows reversible response to external mechanical stimuli for ~80,000 cycles. We showcase the capabilities of our processing technique by presenting prototypes of reflective displays and sensors for monitoring body parts, smart bandages and the capacity of the nanostructured film to map force in real time.

16.
Mol Biol Rep ; 51(1): 288, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38329630

ABSTRACT

BACKGROUND: Insulin-like Growth Factor 2 Binding Protein 3 (IGF2BP3) promotes cancer migration and invasion by binding to several coding and non-coding RNAs. Hypoxia stimulates tumor progression by upregulating Hypoxia Inducible Factors and downstream signaling. Quaking (QKI) gene, which is upregulated in hypoxia and promotes epithelial to mesenchymal transition (EMT), induces circular RNAs. Therefore, the axis between IGF2BP3, QKI, circular RNAs and their respective host genes under hypoxia was studied. METHODS AND RESULTS: Several IGF2BP3-bound circular RNAs were previously identified in HepG2. There were 13 circRNAs originating from 8 host genes bound to IGF2BP3. We confirmed their binding to IGF2BP3 in U87MG using an RNA Immunoprecipitation assay. MALAT1, an oncogenic lncRNA was also found to be associated with IGF2BP3. Three adherent cell lines expressing high levels of IGF2BP3 viz., HeLa, HepG2 and U87MG were cultured under normoxia (20%O2) and hypoxia (<0.2%O2) for 48-168 h. Expression of IGF2BP3, QKI, EMT markers, IGF2BP3-bound circRNAs and their host mRNAs expression were assessed by quantitative real-time PCR (qRT-PCR) in both normoxia and hypoxia. The hypoxia markers viz., VEGF and CA9 were upregulated in all the cell lines in hypoxia at all time points along with an increase in SNAIL. We found 6 genes, viz., PHC3, CDYL, ANKRD17, ARID1A, NEIL3 and FNDC3B with increased expression both at the mRNA and circRNA level indicating their synergistic role in tumor initiation. Overall, we found that circRNA to mRNA expression was observed to be increased for most of the genes and time points of hypoxia in all the cell lines. IGF2BP3 and QKI were also upregulated in hypoxia indicating their role in circRNA biogenesis and stability. CONCLUSION: Our data implies that hypoxia augments circRNA biogenesis which might subsequently play a role in tumor progression.


Subject(s)
Epithelial-Mesenchymal Transition , RNA, Circular , RNA-Binding Proteins , Humans , Cell Transformation, Neoplastic , Epithelial-Mesenchymal Transition/genetics , HeLa Cells , RNA, Circular/genetics , RNA, Messenger , RNA-Binding Proteins/genetics
17.
ACS Appl Bio Mater ; 7(3): 1478-1489, 2024 03 18.
Article in English | MEDLINE | ID: mdl-38354406

ABSTRACT

A major obstacle to axonal regeneration following spinal cord injury (SCI) is neuroinflammation mediated by astrocytes and microglial cells. We previously demonstrated that graphene-based collagen hydrogels alone can decrease neuroinflammation in SCI. Their regenerative potential, however, is poorly understood and incomplete. Furthermore, stem cells have demonstrated both neuroprotective and regenerative properties in spinal cord regeneration, although there are constraints connected with the application of stem cell-based therapy. In this study, we have analyzed the regeneration capability of human bone marrow mesenchymal stem cell (BM-MSC)-loaded graphene-cross-linked collagen cryogels (Gr-Col) in a thoracic (T10-T11) hemisection model of SCI. Our study found that BM-MSC-loaded Gr-Col improves axonal regeneration, reduces neuroinflammation by decreasing astrocyte reactivity, and promotes M2 macrophage polarization. BM-MSC-loaded-Gr-Col demonstrated enhanced regenerative potential compared to Gr-Col and the injury group control. Next-generation sequencing (NGS) analysis revealed that BM-MSC-loaded-Gr-Col modulates the JAK2-STAT3 pathway, thus decreasing the reactive and scar-forming astrocyte phenotype. The decrease in neuroinflammation in the BM-MSC-loaded-Gr-Col group is attributed to the modulation of Notch/Rock and STAT5a/b and STAT6 signaling. Overall, Gene Set Enrichment Analysis suggests the promising role of BM-MSC-loaded-Gr-Col in promoting axonal regeneration after SCI by modulating molecular pathways such as the PI3/Akt pathway, focal adhesion kinase, and various inflammatory pathways.


Subject(s)
Graphite , Mesenchymal Stem Cells , Spinal Cord Injuries , Rats , Animals , Humans , Cryogels/metabolism , Neuroinflammatory Diseases , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/therapy , Collagen , Mesenchymal Stem Cells/metabolism
18.
Int J Adolesc Med Health ; 36(2): 151-160, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38379408

ABSTRACT

OBJECTIVES: The knowledge and awareness surrounding dental implants have significantly increased over the years, driven by advancements in technology, improved educational resources, and increased accessibility to dental care. Despite their widespread use, it is essential to assess the level of knowledge and awareness among patients regarding dental implants. The purpose of the present study is to measure the knowledge, awareness and decision making in dental implant therapy in North Indian population. SETTINGS AND DESIGN: An analytical closed ended questionnaire based study. METHODS: A cross-sectional well structured questionnaire survey was conducted amongst 300 out patients randomly either by interview or Google form to assess the knowledge and awareness about dental implant as a treatment modality. There were seven questions which were close ended multiple choice type concerning patient knowledge and 10 questions for assessing awareness and decision making towards dental implants. Date was collected and descriptive analysis was done. RESULTS: 43.67 % of population was either well informed or moderately informed about replacement of missing teeth. For replacement of missing tooth, most of them (83 %) had the knowledge of dental implant therapy. Dentist was the main source of information about implants. 90.67 % studied population believed that implants provide better treatment because of increased chewing efficiency of implants as compared to removable partial dentures or fixed partial dentures. 86.67 % patients thought that implantologist is better qualified that general dental surgeon. 94 % patients were keen to know more about implants. There is non-significant difference in knowledge and awareness as well as decision making for males and females (p<0.05). CONCLUSION: People have partial knowledge about dental implants and there is need of spreading awareness about implant therapy in the region. Dentist plays a crucial role for dissemination of knowledge. Cost is a constraining factor for this implant therapy to be chosen as a treatment modality.


Subject(s)
Decision Making , Dental Implants , Health Knowledge, Attitudes, Practice , Humans , Cross-Sectional Studies , Male , Female , India , Adult , Surveys and Questionnaires , Middle Aged , Young Adult , Adolescent
19.
Biochem Pharmacol ; 222: 116074, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38395265

ABSTRACT

Olanzapine, a widely prescribed atypical antipsychotic, poses a great risk to the patient's health by fabricating a plethora of severe metabolic and cardiovascular adverse effects eventually reducing life expectancy and patient compliance. Its heterogenous receptor binding profile has made it difficult to point out a specific cause or treatment for the related side effects. Growing body of evidence suggest that transient receptor potential (TRP) channel subfamily Ankyrin 1 (TRPA1) has pivotal role in pathogenesis of type 2 diabetes and obesity. With this background, we aimed to investigate the role of pharmacological manipulations of TRPA1 channels in antipsychotic (olanzapine)-induced metabolic alterations in female mice using allyl isothiocyanate (AITC) and HC-030031 (TRPA1 agonist and antagonist, respectively). It was found that after 6 weeks of treatment, AITC prevented olanzapine-induced alterations in body weight and adiposity; serum, and liver inflammatory markers; glucose and lipid metabolism; and hypothalamic appetite regulation, nutrient sensing, inflammatory and TRPA1 channel signaling regulating genes. Furthermore, several of these effects were absent in the presence of HC-030031 (TRPA1 antagonist) indicating protective role of TRPA1 agonism in attenuating olanzapine-induced metabolic alterations. Supplementary in-depth studies are required to study TRPA1 channel effect on other aspects of olanzapine-induced metabolic alterations.


Subject(s)
Acetanilides , Antipsychotic Agents , Diabetes Mellitus, Type 2 , Purines , Transient Receptor Potential Channels , Mice , Humans , Female , Animals , TRPA1 Cation Channel , Olanzapine , Antipsychotic Agents/toxicity , Isothiocyanates/pharmacology , Obesity/chemically induced , Obesity/drug therapy , Liver/metabolism
20.
J Med Chem ; 67(5): 3339-3357, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38408027

ABSTRACT

Triple-negative breast cancer (TNBC) is a deadly breast cancer with a poor prognosis. Pyruvate kinase M2 (PKM2), a key rate-limiting enzyme in glycolysis, is abnormally highly expressed in TNBC. Overexpressed PKM2 amplifies glucose uptake, enhances lactate production, and suppresses autophagy, thereby expediting the progression of oncogenic processes. A high mortality rate demands novel chemotherapeutic regimens at once. Herein, we report the rational development of an imidazopyridine-based thiazole derivative 7d as an anticancer agent inhibiting PKM2. Nanomolar range PKM2 inhibitors with favorable drug-like properties emerged through enzyme assays. Experiments on two-dimensional (2D)/three-dimensional (3D) cell cultures, lactate release assay, surface plasmon resonance (SPR), and quantitative real-time polymerase chain reaction (qRT-PCR) validated 7d preclinically. In vivo, 7d outperformed lapatinib in tumor regression. This investigation introduces a lead-based approach characterized by its clear-cut chemistry and robust efficacy in designing an exceptionally potent inhibitor targeting PKM2, with a focus on combating TNBC.


Subject(s)
Antineoplastic Agents , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/drug therapy , Pyruvate Kinase , Lapatinib/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Lactates/pharmacology , Cell Line, Tumor , Glycolysis , Cell Proliferation
SELECTION OF CITATIONS
SEARCH DETAIL