Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
J Biol Chem ; 298(10): 102403, 2022 10.
Article in English | MEDLINE | ID: mdl-35995210

ABSTRACT

Trypanosomes cause the devastating disease trypanosomiasis, in which the action of trans-sialidase (TS) enzymes harbored on their surface is a key virulence factor. TS enzymes are N-glycosylated, but the biological functions of their glycans have remained elusive. In this study, we investigated the influence of N-glycans on the enzymatic activity and structural stability of TconTS1, a recombinant TS from the African parasite Trypanosoma congolense. We expressed the enzyme in Chinese hamster ovary Lec1 cells, which produce high-mannose type N-glycans similar to the TS N-glycosylation pattern in vivo. Our MALDI-TOF mass spectrometry data revealed that up to eight putative N-glycosylation sites were glycosylated. In addition, we determined that N-glycan removal via endoglycosidase Hf treatment of TconTS1 led to a decrease in substrate affinity relative to the untreated enzyme but had no impact on the conversion rate. Furthermore, we observed no changes in secondary structure elements of hypoglycosylated TconTS1 in CD experiments. Finally, our molecular dynamics simulations provided evidence for interactions between monosaccharide units of the highly flexible N-glycans and some conserved amino acids located at the catalytic site. These interactions led to conformational changes, possibly enhancing substrate accessibility and enzyme-substrate complex stability. The here-observed modulation of catalytic activity via N-glycans represents a so-far-unknown structure-function relationship potentially inherent in several members of the TS enzyme family.


Subject(s)
Glycoproteins , Neuraminidase , Trypanosoma congolense , Animals , Cricetinae , CHO Cells , Cricetulus , Glycosylation , Neuraminidase/metabolism , Polysaccharides/metabolism , Trypanosoma congolense/enzymology , Glycoproteins/metabolism
3.
Cells ; 10(10)2021 09 24.
Article in English | MEDLINE | ID: mdl-34685515

ABSTRACT

Eukaryotic cells contain dynamic membrane-bound organelles that are constantly remodeled in response to physiological and environmental cues. Key organelles are the endoplasmic reticulum, the Golgi apparatus and the plasma membrane, which are interconnected by vesicular traffic through the secretory transport route. Numerous viruses, especially enveloped viruses, use and modify compartments of the secretory pathway to promote their replication, assembly and cell egression by hijacking the host cell machinery. In some cases, the subversion mechanism has been uncovered. In this review, we summarize our current understanding of how the secretory pathway is subverted and exploited by viruses belonging to Picornaviridae, Coronaviridae, Flaviviridae,Poxviridae, Parvoviridae and Herpesviridae families.


Subject(s)
Endoplasmic Reticulum/virology , Golgi Apparatus/virology , Secretory Pathway/physiology , Viruses/isolation & purification , Biological Transport/physiology , Cell Membrane/metabolism , Cell Membrane/virology , Endoplasmic Reticulum/metabolism , Golgi Apparatus/metabolism , Humans
4.
EMBO Rep ; 22(11): e52948, 2021 11 04.
Article in English | MEDLINE | ID: mdl-34467632

ABSTRACT

The type I interferon (IFN) response is the major host arsenal against invading viruses. IRGM is a negative regulator of IFN responses under basal conditions. However, the role of human IRGM during viral infection has remained unclear. In this study, we show that IRGM expression is increased upon viral infection. IFN responses induced by viral PAMPs are negatively regulated by IRGM. Conversely, IRGM depletion results in a robust induction of key viral restriction factors including IFITMs, APOBECs, SAMHD1, tetherin, viperin, and HERC5/6. Additionally, antiviral processes such as MHC-I antigen presentation and stress granule signaling are enhanced in IRGM-deficient cells, indicating a robust cell-intrinsic antiviral immune state. Consistently, IRGM-depleted cells are resistant to the infection with seven viruses from five different families, including Togaviridae, Herpesviridae, Flaviviverdae, Rhabdoviridae, and Coronaviridae. Moreover, we show that Irgm1 knockout mice are highly resistant to chikungunya virus (CHIKV) infection. Altogether, our work highlights IRGM as a broad therapeutic target to promote defense against a large number of human viruses, including SARS-CoV-2, CHIKV, and Zika virus.


Subject(s)
GTP-Binding Proteins/antagonists & inhibitors , Virus Diseases/immunology , Animals , Antiviral Agents/pharmacology , Humans , Mice , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL
...