Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters











Publication year range
1.
Bioorg Med Chem Lett ; 113: 129963, 2024 Sep 14.
Article in English | MEDLINE | ID: mdl-39278368

ABSTRACT

Two cyclic peroxides, plakortides V (1) and W (2) were purified from the organic extract of the sponge Plakinastrella sp. Their planar structures were established based on extensive NMR and MS analysis and the absolute configurations of the three stereogenic centers of the 1,2-dioxane moiety were determined to be 3R,4S,6S by comparative analysis of the 1H NMR spectral data of the R- or S-MTPA Mosher esters. Compounds 1 and 2 exhibited potent cytotoxic activity against LOX IMVI (melanoma), UO-31 (renal), and HL-60 (TB) (leukemia) cell lines in the NCI-60 cytotoxicity assay.

2.
ACS Infect Dis ; 9(6): 1245-1256, 2023 06 09.
Article in English | MEDLINE | ID: mdl-37163243

ABSTRACT

The continuing emergence of antibiotic-resistant microbes highlights the need for the identification of new chemotypes with antimicrobial activity. One of the most prolific sources of antimicrobial molecules has been the systematic screening of natural product samples. The National Institute of Allergy and Infectious Diseases and the National Cancer Institute here report a large screen of 326,656 partially purified natural product fractions against a panel of four microbial pathogens, resulting in the identification of >3000 fractions with antifungal and/or antibacterial activity. A small sample of these active fractions was further purified and the chemical structures responsible for the antimicrobial activity were elucidated. The proof-of-concept study identified many different chemotypes, several of which have not previously been reported to have antimicrobial activity. The results show that there remain many unidentified antibiotic compounds from nature.


Subject(s)
Anti-Infective Agents , Biological Products , United States , Biological Products/pharmacology , Biological Products/chemistry , National Cancer Institute (U.S.) , Anti-Infective Agents/pharmacology , Anti-Bacterial Agents/pharmacology , Plant Extracts
3.
Antioxidants (Basel) ; 10(12)2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34943100

ABSTRACT

The peumo (Cryptocarya alba) is a native fruit from central Chile that belongs to the Lauraceae family. To characterize the development and the potential health benefits of this edible fruit, quality and physiological parameters, along with antioxidant capacity, were evaluated during three clearly defined developmental stages of the fruit in two seasons. The most distinguishable attributes of ripe fruit were the change in size and color. Low CO2 production and no detectable ethylene levels suggested non-climacteric behavior of the peumo fruit. Peumo demonstrate a significant increase in their antioxidant capacity per 1 g of fresh weight (FW) of the sample, from small to ripe fruit. Higher values in ripe fruit (FRAP: 37.1-38.3 µmol FeSO4/gFW, TEAC: 7.9-8.1 mmol TE/gFW, DPPH: 8.4-8.7 IC50 µg/mL, and ORAC: = 0.19-0.20 mmol TE/gFW) were observed than those in blueberry fruit (FRAP: 4.95 µmol FeSO4/gFW, TEAC: 1.25 mmol TE/gFW, DPPH: 11.3 IC50 µg/mL, and ORAC: 0.032 mmol TE/ gFW). The methanol extracts of ripe fruit displayed the presence of polyphenol acids and quercetin, an ORAC value of 0.637 ± 0.061 mmol TE per g dried weight (DW), and a high cellular antioxidant and anti-inflammatory potential, the latter exceeding the effect of quercetin and indomethacin used as standard molecules. Also, the assay of isolated rat aorta with endothelium-dependent relaxation damage demonstrated that the peumo extract induced vascular protection, depending on its concentration under a high glucose condition. These results demonstrate that these endemic fruits have a good chance as ingredients or foods with functional properties.

4.
Pharmaceuticals (Basel) ; 14(1)2020 Dec 26.
Article in English | MEDLINE | ID: mdl-33375355

ABSTRACT

Selaginella P. Beauv. is a group of vascular plants in the family Selaginellaceae Willk., found worldwide and numbering more than 700 species, with some used as foods and medicines. The aim of this paper was to compare methanolic (MeOH) and dichloromethane (DCM) extracts of eight Selaginella species on the basis of their composition and biological activities. Six of these Selaginella species are underinvestigated. Using ultra-high performance liquid chromatography-high-resolution mass spectrometry (UHPLC-HRMS) analysis, we identified a total of 193 compounds among the tested Selaginella species, with flavonoids predominating. MeOH extracts recovered more constituents that were detected, including selaginellins, the occurrence of which is only typical for this plant genus. Of all the tested species, Selaginella apoda contained the highest number of identified selaginellins. The majority of the compounds were identified in S. apoda, the fewest compounds in Selaginella cupressina. All the tested species demonstrated antioxidant activity using oxygen radical absorption capacity (ORAC) assay, which showed that MeOH extracts had higher antioxidant capacity, with the half maximal effective concentration (EC50) ranging from 12 ± 1 (Selaginella myosuroides) to 124 ± 2 (Selaginella cupressina) mg/L. The antioxidant capacity was presumed to be correlated with the content of flavonoids, (neo)lignans, and selaginellins. Inhibition of acetylcholinesterase (AChE) was mostly discerned in DCM extracts and was only exhibited in S. myosuroides, S. cupressina, Selaginella biformis, and S. apoda extracts with the half maximal inhibitory concentration (IC50) in the range of 19 ± 3 to 62 ± 1 mg/L. Substantial cytotoxicity against cancer cell lines was demonstrated by the MeOH extract of S. apoda, where the ratio of the IC50 HEK (human embryonic kidney) to IC50 HepG2 (hepatocellular carcinoma) was 7.9 ± 0.2. MeOH extracts inhibited the production of nitrate oxide and cytokines in a dose-dependent manner. Notably, S. biformis halved the production of NO, tumor necrosis factor (TNF)-α, and interleukin (IL)-6 at the following concentrations: 105 ± 9, 11 ± 1, and 10 ± 1 mg/L, respectively. Our data confirmed that extracts from Selaginella species exhibited cytotoxicity against cancer cell lines and AChE inhibition. The activity observed in S. apoda was the most promising and is worth further exploration.

5.
Nanomaterials (Basel) ; 10(12)2020 Nov 28.
Article in English | MEDLINE | ID: mdl-33260637

ABSTRACT

Pyraclostrobin (Pyr) is one of the most effective fungicides. However, it can degrade via photolysis in water, it is toxic to aquatic life and if inhaled, it has a low solubility in water, that leads to difficulties when applying to plants by spraying. Additionally, the necessity of repeated (weekly) sprays of fungicides when the pathogen growth risk is the highest, such as at the temperature range of 24 to 36 °C and increased humidity of about 95%, leads to loss of efficiency of the fungicide and overdose of chemicals. In the present study, pyraclostrobin was microencapsulated to solve the abovementioned issues. As a core of capsules octadecane (OD) with a melting point of 28 °C was used, thus, the release of pyraclostrobin was controlled via temperature change. Pyraclostrobin-loaded submicrocapsules (PyrSMCs) were characterized using SEM, DLS, TGA/DSC, HPLC, FTIR methods; stimuli-responsivity was tested employing in vitro tests with pathogenic culture (Fungal strain of Pyrenophora teres - CPPF-453) grown in Petri dishes. Toxicity of PyrSMCs to Artemia salina was studied as well. Size of capsules was 200-600 nm along with the presence of bigger capsules with a diameter of 1-4 µm. PyrSMCs showed excellent antifungal effects above the melting point of octadecane. PyrSMCs demonstrated 29 times less toxicity than pyraclostrobin of technical grade. Overall, results show the potential of such capsules to be applied in the agricultural industry for precise agriculture strategies.

6.
Antibiotics (Basel) ; 9(8)2020 Jul 25.
Article in English | MEDLINE | ID: mdl-32722434

ABSTRACT

Arrayan and peumo fruits are commonly used in the traditional medicine of Chile. In this study, the concentration of the extracts halving the bacterial viability and biofilms formation and disruption of the drug-sensitive and drug-resistant strains of Staphylococcus aureus and Pseudomonas aeruginosa was determined. The chemical composition of extracts was analyzed by high-resolution liquid chromatography coupled with mass spectrometry (U-HPLC/MS). The arrayan extract (Inhibitory concentration IC50 0.35 ± 0.01 mg/mL) was more effective than peumo extract (IC50 0.53 ± 0.02 mg/mL) in the inhibition of S. aureus planktonic cells. Similarly, the arrayan extract was more effective in inhibiting the adhesion (S. aureus IC50 0.23 ± 0.02 mg/mL, P. aeruginosa IC50 0.29 ± 0.02 mg/mL) than peumo extracts (S. aureus IC50 0.47 ± 0.03 mg/mL, P. aeruginosa IC50 0.35 ± 0.01 mg/mL). Both extracts inhibited quorum sensing in a concentration-dependent manner, and the most significant was the autoinducer-2 type communication inhibition by arrayan extract. Both extracts also disrupted preformed biofilm of P. aeruginosa (arrayan IC50 0.56 ± 0.04 mg/mL, peumo IC50 0.59 ± 0.04 mg/mL). However, neither arrayan nor peumo extracts disrupted S. aureus mature biofilm. U-HPLC/MS showed that both fruit extracts mainly possessed quercetin compounds; the peumo fruit extract also contained phenolic acids and phenylpropanoids. Our results suggested that both extracts could be used as natural antimicrobials for some skin and nosocomial infections.

7.
J Nat Prod ; 83(8): 2357-2366, 2020 08 28.
Article in English | MEDLINE | ID: mdl-32691595

ABSTRACT

The spirooxepinisoxazoline alkaloid psammaplysin F (1) was selected as a scaffold for the generation of a unique screening library for both drug discovery and chemical biology research. Large-scale extraction and isolation chemistry was performed on a marine sponge (Hyattella sp.) collected from the Great Barrier Reef in order to acquire >200 mg of the desired bromotyrosine-derived alkaloidal scaffold. Parallel solution-phase semisynthesis was employed to generate a series of psammaplysin-based urea (2-9) and amide analogues (10-11) in low to moderate yields. The chemical structures of all analogues were characterized using NMR and MS data. The absolute configuration of psammaplysin F and all semisynthetic analogues was determined as 6R, 7R by comparison of ECD data with literature values. All compounds (1-11) were evaluated for their effect on cell cycle distribution and changes to cancer metabolism in LNCaP prostate cancer cells using a multiparametric quantitative single-cell imaging approach. These investigations identified that in LNCaP cells psammaplysin F and some urea analogues caused loss of mitochondrial membrane potential, fragmentation of the mitochondrial tubular network, chromosome misalignment, and cell cycle arrest in mitosis.


Subject(s)
Prostatic Neoplasms/pathology , Single-Cell Analysis/methods , Spiro Compounds/chemical synthesis , Tyrosine/analogs & derivatives , Animals , Cell Line, Tumor , Humans , Male , Porifera/chemistry , Spectrum Analysis/methods , Spiro Compounds/isolation & purification , Tyrosine/chemical synthesis , Tyrosine/isolation & purification
8.
J Nat Prod ; 81(4): 1079-1083, 2018 04 27.
Article in English | MEDLINE | ID: mdl-29533611

ABSTRACT

Chemical investigation of the roots of the Australian desert plant Eremophila microtheca yielded microthecaline A (1), a novel quinoline-serrulatane natural product. The structure of 1 was determined by spectroscopic analysis, and the absolute configuration was assigned by ECD. Compound 1 exhibited moderate antimalarial activity against Plasmodium falciparum (3D7 strain), with an IC50 of 7.7 µM. Microthecaline A represents the first quinoline-serrulatane alkaloid to be isolated from Nature.


Subject(s)
Alkaloids/chemistry , Eremophila Plant/chemistry , Plant Extracts/chemistry , Plant Roots/chemistry , Quinolines/chemistry , Antimalarials/chemistry , Antimalarials/pharmacology , Australia , Biological Products/chemistry , Biological Products/pharmacology , Plant Extracts/pharmacology , Plasmodium falciparum/drug effects
9.
Bioorg Med Chem Lett ; 27(17): 4091-4095, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28774427

ABSTRACT

A plant-derived natural product scaffold, 3,7,8-trihydroxyserrulat-14-en-19-oic acid (1) was isolated in high yield from the aerial parts of the endemic Australian desert plant Eremophila microtheca. This scaffold (1) was subsequently used in the generation of a series of new amide analogues via a one-pot mixed anhydride amidation using pivaloyl chloride. The structures of all analogues were characterized using MS, NMR, and UV data. The major serrulatane natural products (1-3), isolated from the plant extract, and all amide analogues (6-15) together with several pivaloylated derivatives of 3,7,8-trihydroxyserrulat-14-en-19-oic acid (16-18) were evaluated for their antimalarial activity against 3D7 (chloroquine sensitive) and Dd2 (chloroquine resistant) Plasmodium falciparum strains, and preliminary cytotoxicity data were also acquired using the human embryonic kidney cell line HEK293. The natural product scaffold (1) did not display any antimalarial activity at 10µM. Replacing the carboxylic acid of 1 with various amides resulted in moderate activity against the P. falciparum 3D7 strain with IC50 values ranging from 1.25 to 5.65µM.


Subject(s)
Amides/pharmacology , Antimalarials/pharmacology , Biological Products/pharmacology , Diterpenes/pharmacology , Eremophila Plant/chemistry , Plant Extracts/chemistry , Plasmodium falciparum/drug effects , Amides/chemical synthesis , Amides/chemistry , Antimalarials/chemical synthesis , Antimalarials/chemistry , Australia , Biological Products/chemical synthesis , Biological Products/chemistry , Cell Survival/drug effects , Diterpenes/chemical synthesis , Diterpenes/chemistry , Dose-Response Relationship, Drug , HEK293 Cells , Humans , Molecular Structure , Structure-Activity Relationship
10.
Magn Reson Chem ; 54(11): 880-886, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27379746

ABSTRACT

Previous investigations of the aerial parts of the Australian plant Eremophila microtheca and Syzygium tierneyanum resulted in the isolation of the antimicrobial flavonoid jaceosidin (4) and 2',6'-dihydroxy-4'-methoxy-3',5'-dimethyl chalcone (7), respectively. In this current study, compounds 4 and 7 were derivatized by acetylation, pivaloylation, and methylation reactions. The final products, 5,7,4'-triacetoxy jaceosidin (10), 5,7,4'-tripivaloyloxy jaceosidin (11), 5,7,4'-trimethoxy jaceosidin (12), 2',6'-diacetoxy-4'-methoxy-3',5'-dimethyl chalcone (13), 2'-hydroxy-4'-methoxy-6'-pivaloyloxy-3',5'-dimethyl chalcone (14), and 2'-hydroxy-4',6'-dimethoxy-3',5'-dimethyl chalcone (15) were all fully characterized by NMR and MS. Derivatives 10 and 13 have been previously reported but were only partially characterized. This is the first reported synthesis of 11 and 14. The natural products and their derivatives were evaluated for their antibacterial and antifungal properties, and the natural product, jaceosidin (4) and the acetylated derivative, 5,7,4'-triacetoxy jaceosidin (10), showed modest antibacterial activity (32-128 µg/ml) against Staphylococcus aureus strains. Copyright © 2016 John Wiley & Sons, Ltd.


Subject(s)
Chalcones/chemistry , Chalcones/chemical synthesis , Flavonoids/chemistry , Flavonoids/chemical synthesis , Anti-Bacterial Agents/pharmacology , Chalcones/pharmacology , Drug Resistance, Microbial , Flavonoids/pharmacology , Fungi/drug effects , Magnetic Resonance Spectroscopy , Mass Spectrometry , Microbial Sensitivity Tests , Staphylococcus aureus/drug effects , Structure-Activity Relationship , Syzygium/chemistry
11.
Phytochemistry ; 124: 79-85, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26743853

ABSTRACT

Eighteen natural products sourced from Australian micro- or macro-fungi were screened for antibacterial and antifungal activity. This focused library was comprised of caprolactams, polyamines, quinones, and polyketides, with additional large-scale isolation studies undertaken in order to resupply previously identified compounds. Chemical investigations of the re-fermented culture from the endophytic fungus Pestalotiopsis sp. yielded three caprolactam analogues, pestalactams D-F, along with larger quantities of the known metabolite pestalactam A, which was methylated using diazomethane to yield 4-O-methylpestalactam A. The chemical structures of the previously undescribed fungal metabolites were determined by analysis of 1D/2D NMR and MS data. The structure of 4-O-methylpestalactam A was confirmed following single crystal X-ray diffraction analysis. The antibacterial and antifungal activity of all compounds was assessed, which identified three compounds, (1S,3R)-austrocortirubin, (1S,3S)-austrocortirubin, and 1-deoxyaustrocortirubin with mild activity (100 µM) against Gram-positive isolates and one compound, 2-hydroxy-6-methyl-8-methoxy-9-oxo-9H-xanthene-1-carboxylic acid, with activity against Cryptococcus neoformans and Cryptococcus gattii at 50 µM.


Subject(s)
Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/pharmacology , Antifungal Agents/isolation & purification , Antifungal Agents/pharmacology , Biological Products/isolation & purification , Biological Products/pharmacology , Caprolactam , Xylariales/chemistry , Anti-Bacterial Agents/chemistry , Antifungal Agents/chemistry , Australia , Biological Products/chemistry , Caprolactam/analogs & derivatives , Caprolactam/chemistry , Caprolactam/isolation & purification , Caprolactam/pharmacology , Cryptococcus neoformans/drug effects , Crystallography, X-Ray , Microbial Sensitivity Tests , Molecular Structure , Nuclear Magnetic Resonance, Biomolecular
12.
Nat Prod Rep ; 33(3): 372-81, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26739749

ABSTRACT

A diverse range of strategies leading to natural product derived or inspired screening libraries aims to increase the number of new chemical entities emerging per year. However, the use of isolated natural products as scaffolds for the semi-synthesis of larger biological screening libraries remains rare. This particular method avoids the time-consuming and resource intensive de novo synthetic strategy for scaffold production, and has become more feasible through improvements to synthetic and isolation methodologies. This Highlight examines the increasing popularity of small- to large-sized screening libraries generated directly from isolated natural products. Several of the examples detailed herein show how this strategy can lead to improvements in not only potency but also other important (and often forgotten) drug discovery parameters such as toxicity, selectivity, lipophilicity and bioavailability. However, there are still improvements to be made to this method, particularly in the choice of the natural product scaffold and the derivatising reagents used. Avoidance of known nuisance compounds or structural alert motifs (e.g. PAINS) that interfere with bioactivity screens, and impact downstream drug development will play a significant role in the future success of this methodology. Incorporation of rational design strategies that take into account the physicochemical parameters (e.g. log P, MW, HBA, HBD) of the final semi-synthetic library analogues will also facilitate the discovery and development of leads and drugs. A multi-pronged approach to drug discovery that incorporates the use of isolated natural product scaffolds for library generation will surely be beneficial.


Subject(s)
Biological Products/chemistry , Drug Discovery , Molecular Structure , Small Molecule Libraries
13.
J Nat Prod ; 78(4): 914-8, 2015 Apr 24.
Article in English | MEDLINE | ID: mdl-25803573

ABSTRACT

The fungal metabolite 3-chloro-4-hydroxyphenylacetic acid (1) was utilized in the generation of a unique drug-like screening library using parallel solution-phase synthesis. A 20-membered amide library (3-22) was generated by first converting 1 to methyl (3-chloro-4-hydroxyphenyl)acetate (2), then reacting this scaffold with a diverse series of primary amines via a solvent-free aminolysis procedure. The structures of the synthetic analogues (3-22) were elucidated by spectroscopic data analysis. The structures of compounds 8, 12, and 22 were confirmed by single X-ray crystallographic analysis. All compounds were evaluated for cytotoxicity against a human prostate cancer cell line (LNCaP) and for antiparasitic activity toward Trypanosoma brucei brucei and Plasmodium falciparum and showed no significant activity at 10 µM. The library was also tested for effects on the lipid content of LNCaP and PC-3 prostate cancer cells, and it was demonstrated that the fluorobenzyl analogues (12-14) significantly reduced cellular phospholipid and neutral lipid levels.


Subject(s)
Biological Products/chemical synthesis , Phenylacetates/chemistry , Antimalarials/pharmacology , Biological Products/chemistry , Combinatorial Chemistry Techniques , Crystallography, X-Ray , Humans , Male , Molecular Conformation , Molecular Structure , Nuclear Magnetic Resonance, Biomolecular , Phenylacetates/chemical synthesis , Plasmodium falciparum/drug effects , Structure-Activity Relationship , Trypanosoma brucei brucei/drug effects
14.
Asian Pac J Trop Biomed ; 3(4): 291-6, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23620853

ABSTRACT

OBJECTIVE: To Isolate, purify, characterize, and evaluate the bioactive compounds from the sponge-derived fungus Penicillium sp. FF001 and to elucidate its structure. METHODS: The fungal strain FF001 with an interesting bioactivity profile was isolated from a marine Fijian sponge Melophlus sp. Based on conidiophores aggregation, conidia development and mycelia morphological characteristics, the isolate FF001 was classically identified as a Penicillium sp. The bioactive compound was identified using various spectral analysis of UV, high resolution electrospray ionization mass spectra, 1H and 13C NMR spectral data. Further minimum inhibitory concentrations (MICs) assay and brine shrimp cytotoxicity assay were also carried out to evaluate the biological properties of the purified compound. RESULTS: Bioassay guided fractionation of the EtOAc extract of a static culture of this Penicillium sp. by different chromatographic methods led the isolation of an antibacterial, anticryptococcal and cytotoxic active compound, which was identified as citrinin (1). Further, citrinin (1) is reported for its potent antibacterial activity against methicillin-resistant Staphylococcus aureus (S. aureus), rifampicin-resistant S. aureus, wild type S. aureus and vancomycin-resistant Enterococcus faecium showed MICs of 3.90, 0.97, 1.95 and 7.81 µg/mL, respectively. Further citrinin (1) displayed significant activity against the pathogenic yeast Cryptococcus neoformans (MIC 3.90 µg/mL), and exhibited cytotoxicity against brine shrimp larvae LD50 of 96 µg/mL. CONCLUSIONS: Citrinin (1) is reported from sponge associated Penicillium sp. from this study and for its strong antibacterial activity against multi-drug resistant human pathogens including cytotoxicity against brine shrimp larvae, which indicated that sponge associated Penicillium spp. are promising sources of natural bioactive metabolites.


Subject(s)
Anti-Bacterial Agents/pharmacology , Citrinin/pharmacology , Drug Resistance, Multiple, Bacterial/drug effects , Penicillium/chemistry , Porifera/microbiology , Animals , Anti-Bacterial Agents/chemistry , Artemia/drug effects , Citrinin/chemistry , Lethal Dose 50 , Methicillin-Resistant Staphylococcus aureus/drug effects , Microbial Sensitivity Tests , Penicillium/cytology , Toxicity Tests
15.
Nat Prod Res ; 27(16): 1488-91, 2013.
Article in English | MEDLINE | ID: mdl-22963320

ABSTRACT

A sesquiterpenoid quinone, epi-ilimaquinone (1), and two sesquiterpene amino quinones, smenospongine (2) and glycinylilimaquinone (3), were isolated from the Fijian marine sponge Hippospongia sp. The structures of these compounds were determined by spectroscopic analysis. Compounds 1 and 3 were reported for the first time in this study from the sponge of the genus Hippospongia. Compound 1 displayed potent cytotoxic activity and showed antibacterial activity against methicillin-resistant Staphylococcus aureus, wild type S. aureus and vancomycin-resistant Enterococcus faecium and displayed antifungal activity against amphotericin-resistant Candida albicans while compounds 2 and 3 showed moderate cytotoxic activity. However, compound 1 did not show appreciable antifungal activity against wild type C. albicans, Cryptococcus neoformans, Aspergillus niger, Penicillium sp., Rhizopus sporangia or Sordaria sp.


Subject(s)
Antifungal Agents/pharmacology , Porifera/chemistry , Quinones/chemistry , Sesquiterpenes/chemistry , Animals , Antifungal Agents/chemistry , Aspergillus/drug effects , Candida albicans/drug effects , Penicillium/drug effects , Rhizopus/drug effects
16.
Nat Prod Rep ; 29(12): 1424-62, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22976787

ABSTRACT

Over the past 30 years, approximately 140 papers have been published on marine natural products chemistry and related research from the Fiji Islands. These came about from studies starting in the early 1980s by the research groups of Crews at the University of California Santa Cruz, Ireland at the University of Utah, Gerwick from the Scripps Institution of Oceanography, the University of California at San Diego and the more recent groups of Hay at the Georgia Institute of Technology (GIT) and Jaspars from the University of Aberdeen. This review covers both known and novel marine-derived natural products and their biological activities. The marine organisms reviewed include invertebrates, plants and microorganisms, highlighting the vast structural diversity of compounds isolated from these organisms. Increasingly during this period, natural products chemists at the University of the South Pacific have been partners in this research, leading in 2006 to the development of a Centre for Drug Discovery and Conservation (CDDC).


Subject(s)
Biological Products , Marine Biology , Animals , Biological Products/chemistry , Biological Products/isolation & purification , Biological Products/pharmacology , Fiji , Fungi/chemistry , Humans , Invertebrates/chemistry , Molecular Structure , Plants, Medicinal/chemistry , Porifera/chemistry , Urochordata/chemistry
17.
Mar Drugs ; 10(1): 200-208, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22363230

ABSTRACT

A new tetramic acid glycoside, aurantoside K, was isolated from a marine sponge belonging to the genus Melophlus. The structure of the compound was elucidated on the basis of spectroscopic analysis (¹H NMR, ¹H-¹H COSY, HSQC, and HMBC, as well as high-resolution ESILCMS). Aurantoside K did not show any significant activity in antimalarial, antibacterial, or HCT-116 cytotoxicity assays, but exhibited a wide spectrum of antifungal activity against wild type Candida albicans, amphotericin-resistant C. albicans, Cryptococcus neoformans, Aspergillus niger, Penicillium sp., Rhizopus sporangia and Sordaria sp.


Subject(s)
Antifungal Agents/isolation & purification , Glycosides/isolation & purification , Porifera/chemistry , Pyrrolidinones/isolation & purification , Animals , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Glycosides/chemistry , Glycosides/pharmacology , Magnetic Resonance Spectroscopy , Pyrrolidinones/chemistry , Pyrrolidinones/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL