Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Curr Pharm Des ; 30(3): 161-168, 2024.
Article in English | MEDLINE | ID: mdl-38243948

ABSTRACT

Sepsis is a complex clinical condition and a leading cause of death worldwide. During Sepsis, there is a derailment in the host response to infection, which can progress to severe sepsis and multiple organ dysfunction or failure, which leads to death. Free radicals, including reactive oxygen species (ROS) generated predominantly in mitochondria, are one of the key players in impairing normal organ function in sepsis. ROS contributing to oxidative stress has been reported to be the main culprit in the injury of the lung, heart, liver, kidney, gastrointestinal, and other organs. Here in the present review, we describe the generation, and essential properties of various types of ROS, their effect on macromolecules, and their role in mitochondrial dysfunction. Furthermore, the mechanism involved in the ROS-mediated pathogenesis of sepsis-induced organ dysfunction has also been discussed.


Subject(s)
Mitochondrial Diseases , Sepsis , Humans , Reactive Oxygen Species , Multiple Organ Failure , Free Radicals , Sepsis/pathology , Oxidative Stress
2.
Diagnostics (Basel) ; 13(2)2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36673087

ABSTRACT

Sepsis is one of the deadliest disorders in the new century due to specific limitations in early and differential diagnosis. Moreover, antimicrobial resistance (AMR) is becoming the dominant threat to human health globally. The only way to encounter the spread and emergence of AMR is through the active detection and identification of the pathogen along with the quantification of resistance. For better management of such disease, there is an essential requirement to approach many suitable diagnostic techniques for the proper administration of antibiotics and elimination of these infectious diseases. The current method employed for the diagnosis of sepsis relies on the conventional culture of blood suspected infection. However, this method is more time consuming and generates results that are false negative in the case of antibiotic pretreated samples as well as slow-growing microbes. In comparison to the conventional method, modern methods are capable of analyzing blood samples, obtaining accurate results from the suspicious patient of sepsis, and giving all the necessary information to identify the pathogens as well as AMR in a short period. The present review is intended to highlight the culture shift from conventional to modern and advanced technologies including their limitations for the proper and prompt diagnosing of bloodstream infections and AMR detection.

3.
Vaccines (Basel) ; 10(10)2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36298439

ABSTRACT

Oxidative stress resulting from the disproportion of oxidants and antioxidants contributes to both physiological and pathological conditions in sepsis. To combat this, the antioxidant defense system comes into the picture, which contributes to limiting the amount of reactive oxygen species (ROS) leading to the reduction of oxidative stress. However, a strong relationship has been found between scavengers of ROS and antioxidants in preclinical in vitro and in vivo models. ROS is widely believed to cause human pathology most specifically in sepsis, where a small increase in ROS levels activates signaling pathways to initiate biological processes. An inclusive understanding of the effects of ROS scavenging in cellular antioxidant signaling is essentially lacking in sepsis. This review compiles the mechanisms of ROS scavenging as well as oxidative damage in sepsis, as well as antioxidants as a potent therapeutic. Direct interaction between ROS and cellular pathways greatly affects sepsis, but such interaction does not provide the explanation behind diverse biological outcomes. Animal models of sepsis and a number of clinical trials with septic patients exploring the efficiency of antioxidants in sepsis are reviewed. In line with this, both enzymatic and non-enzymatic antioxidants were effective, and results from recent studies are promising. The usage of these potent antioxidants in sepsis patients would greatly impact the field of medicine.

4.
Vaccines (Basel) ; 10(10)2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36298513

ABSTRACT

Previous reports from our lab have documented dysregulated host inflammatory reactions in response to bacterial infections in sepsis. Both Gram-negative bacteria (GNB) and Gram-positive bacteria (GPB) play a significant role in the development and progression of sepsis by releasing several virulence factors. During sepsis, host cells produce a range of inflammatory responses including inducible nitric oxide synthase (iNOS) expression, nitrite generation, neutrophil extracellular traps (NETs) release, and pro-inflammatory cytokines production. The current study was conducted to discern the differences in host inflammatory reactions in response to both Escherichia coli and Staphylococcus aureus along with the organ dysfunction parameters in patients of sepsis. We examined 60 ICU sepsis patients identified based on the Acute Physiology and Chronic Health Evaluation II (APACHE II) and Sequential Organ Failure Assessment (SOFA II) scores. Pathogen identification was carried out using culture-based methods and gene-specific primers by real-time polymerase chain reaction (RT-PCR). Samples of blood from healthy volunteers were spiked with E. coli (GNB) and S. aureus (GPB). The incidence of NETs formation, iNOS expression, total nitrite content, and pro-inflammatory cytokine level was estimated. Prevalence of E. coli, A. baumannii (both GNB), S. aureus, and Enterococcus faecalis (both GPB) was found in sepsis patients. Augmented levels of inflammatory mediators including iNOS expression, total nitrite, the incidence of NETs, and proinflammatory cytokines, during spiking, were found in response to S. aureus infections in comparison with E. coli infections. These inflammatory mediators were found to be positively correlated with organ dysfunction in both GN and GP infections in sepsis patients. Augmented host inflammatory response was generated in S. aureus infections as compared with E. coli.

5.
Clin Chim Acta ; 523: 152-162, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34537216

ABSTRACT

Sepsis is a clinical syndrome resulting from infection followed by inflammation and is one of the significant causes of mortality worldwide. The underlying reason is the host's uncontrolled inflammatory response due to an infection led to multiple organ dysfunction/failure. Neutrophils, an innate immune cell, are forerunners to reach the site of infection/inflammation for clearing the infection and resolute the inflammation during sepsis. A relatively new neutrophil effector function, neutrophil extracellular traps (NETs), have been demonstrated to kill the pathogens by releasing DNA decorated with histone and granular proteins. A growing number of pieces of shreds of evidence suggest that unregulated incidence of NETs have a significant influence on the pathogenesis of sepsis-induced multiple organ damage, including arterial hypotension, hypoxemia, coagulopathy, renal, neurological, and hepatic dysfunction. Thus, excessive production and improper resolution of NETs are of significant therapeutic value in combating sepsis-induced multiple organ failure. The purpose of this review is intended to highlight the role of NETs in sepsis-induced organ failure. Furthermore, the current status of therapeutic strategies to intersect the harmful effects of NETs to restore organ functions is discussed.


Subject(s)
Extracellular Traps , Sepsis , Humans , Inflammation , Multiple Organ Failure , Neutrophils
6.
Clin Chim Acta ; 521: 45-58, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34153274

ABSTRACT

Sepsis, which includes infection followed by inflammation, is one of the leading causes of death among neonates worldwide. The major attribute of this disease process is dysregulated host response to infection leading to organ dysfunction and potentially death. A comprehensive understanding of the host response as well as the pathogen itself are important factors contributing to outcome. Early diagnosis is paramount, as it leads to accurate assessment and improved clinical management. Accordingly, a number of diagnostic platforms have been introduced to assess the presence of blood stream pathogens in septic neonates. Unfortunately, current point-of-care (POC) methods rely on a single parameter/biomarker and thus lack a comprehensive evaluation. The emerging field of biosensing has, however, resulted in the development of a wide range of analytical devices that may be useful at POC. This review discusses currently available methods to screen the inflammatory process in neonatal sepsis. We describe POC sensor-based methods for single platform multi-analyte detection and highlight the latest advances in this evolving technology. Finally, we critically evaluate the applicability of these POC devices clinically for early diagnosis of sepsis in neonates.


Subject(s)
Neonatal Sepsis , Sepsis , Biomarkers , Early Diagnosis , Humans , Infant, Newborn , Neonatal Sepsis/diagnosis , Point-of-Care Systems , Sepsis/diagnosis
7.
Bioelectrochemistry ; 138: 107725, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33360954

ABSTRACT

The present work is aimed at improving the adhesion of nanomaterials at the interface of solid state working electrodes. Towards this, herein, an efficient method has been proposed that requires the electrode interface to be decorated with an optimally thin layer of Nafion. This selectively permeable layer ensures the stability of the sensor interface, without hampering the transport of biomolecules and electrons. As a case study, here, electrospun Cerium oxide nanofiber (CeNF) modified Glassy carbon electrodes (GCE) have been used as the sensing interface, and stability and performance of the GCE/CeNF/Nafion interface is evaluated using analytical electrochemistry. The CeNF is synthesized via electrospinning and is characterized using X-ray diffraction spectroscopy, Thermal gravimetry, Fourier transform infrared spectroscopy, and Field emission scanning electron microscopy. Further, detection of sepsis specific biomarker TNF-α from spiked buffer samples is demonstrated, as a case study, towards evaluating the effect of Nafion on the interfacial sensitivity. The achieved LOD of GCE/CeNF and GCE/CeNF/Nafion for TNF-α detection were 2.8 fg/mL and 1.2 fg/mL, respectively. A comparative analysis between the Electrochemical impedance spectroscopic (EIS) results of the GCE/CeNF and the GCE/CeNF/Nafion interfaces confirms the improvement in stability, without affecting the sensitivity and the limiting detection.


Subject(s)
Cerium/chemistry , Electrochemistry/instrumentation , Fluorocarbon Polymers/chemistry , Nanofibers/chemistry , Tumor Necrosis Factor-alpha/analysis , Carbon/chemistry , Electrodes , Limit of Detection
8.
Electroanalysis ; 32(9): 2056-2064, 2020 Sep.
Article in English | MEDLINE | ID: mdl-33456276

ABSTRACT

A sensitive detection of extremely toxic phenylpyrazole insecticide, 'Fipronil' is presented. Currently, the advancement of approaches for the detection of insecticides at low concentrations with less time is important for environmental safety assurance. Considering this fact, an effort has been made to develop an electrospun CoZnO nanofiber (NF) based label-free electrochemical system for the detection of fipronil. The CoZnO NF were characterized using different techniques including field emission scanning electron microscopy (FE-SEM), Energy Dispersive X-Ray Analysis (EDX), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and Raman Spectroscopy. Based on the experimental results, the proposed platform displayed a linear response for fipronil in the attogram/mL range despite the multiple interfering agents. The sensitivity of the device was found to be 3.99 Kῼ (g/ml)-1 cm-2. Limit of detection (LOD) and limit of quantification (LOQ) were calculated and found to be 112 ag mL-1 and 340 ag mL-1 respectively. Further, this proposed sensor will be implemented in the fields for the rapid and proficient detection of the real samples.

9.
Clin Chim Acta ; 495: 606-610, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31181192

ABSTRACT

BACKGROUND: Previous study from this lab has discerned oxidative, nitrosative stress and their relationship with cytokines contributing to the severity of sepsis and organ dysfunction. Cytokines are known to induce neutrophil extracellular traps (NETs) formation via free radicals generation. Hyper-activation of neutrophil leads to the increased NETs formation or ineffective clearance of NETs would likely increase the risk of auto-antibody generation against NETs components and being partly responsible for the sepsis severity and organ dysfunction. The present study was undertaken to further assess the status of NETs formation and their correlation with severity of sepsis, with the cytokines and organ dysfunction. METHODS: The level of NETs formation, DNA release, elastase release, and inflammatory cytokines was determined in 80 sepsis patients and 45 healthy volunteers. Their linearity with organ parameters and associations with sepsis severity were also assessed. RESULTS: NETs formation experiment was carried out and it was significantly higher in sepsis (70%) compared to control (30%). NETs % were positively correlated with severity of sepsis and organ dysfunction. Pearson's correlation coefficient demonstrated a direct relation between NETs components and organ parameters with Sepsis severity scores. CONCLUSION: NETs formation is significantly higher due to which it is contributing to the sepsis severity and organ failure.


Subject(s)
Extracellular Traps/metabolism , Multiple Organ Failure/immunology , Neutrophils/cytology , Sepsis/immunology , Adult , Case-Control Studies , Female , Humans , Male , Middle Aged
10.
Biosens Bioelectron ; 124-125: 205-215, 2019 Jan 15.
Article in English | MEDLINE | ID: mdl-30388563

ABSTRACT

Sepsis is one of the leading causes of mortality among critically ill patients globally. According to WHO report 2018, it is estimated to affect beyond 30 million people worldwide every year. It causes loss of human lives, which arise from infection and inflammation and long term stay in intensive care unit (ICU) in hospitals. Despite the availability of satisfactory prognostic markers contributing to the diagnosis of sepsis, millions of people die even after admission to the hospitals. Correct and early diagnosis of sepsis leads to rapid administration of appropriate antibiotics can thus potentially avert the attainment to critical stages of sepsis, thereby saving human lives. Conventional diagnostic practices are costly, time consuming and they lack adequate sensitivity and selectivity, provoking an urgent need for developing alternate sepsis diagnosis systems. Nevertheless, biosensors have the much-treasured scope for reasonable sepsis diagnosis. Advancement in nano-biotechnology has provided new paradigm for biosensor platforms with upgraded features. Here, we provide an overview of the recent advances in biosensors with a brief introduction to sepsis, followed by the conventional methods of diagnosis and bio-sensing. To conclude, a proactive role and an outlook on technologically advanced biosensor platforms are discoursed with possible biomedical applications.


Subject(s)
Biomarkers/chemistry , Biosensing Techniques , Early Diagnosis , Sepsis/diagnosis , Humans , Sepsis/pathology
11.
Iran J Allergy Asthma Immunol ; 17(3): 208-220, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29908538

ABSTRACT

Neutrophils are the forerunner in innate immunity by defending the host organisms against infectious pathogens. During such process, neutrophils reach the site of inflammation/infection and eliminate the pathogens by phagocytosis as well as by forming the neutrophil extracellular traps (NETs). NETs trap and eradicate a number of microbes including bacteria, fungi, protozoa, viruses. NETs consist of DNA which is decorated with histones and granular proteins such as neutrophil elastase (NE), gelatinase, myeloperoxidase. NETosis (a process of NETs formation) is also involved in many inflammatory and autoimmune disorders with a major contribution to acute respiratory distress syndrome, sepsis, cystic fibrosis, periodontitis. Hyper NETosis or ineffective clearance of NETs would likely increase the risk of auto-antibody generation against NETs components and contribution in auto-inflammatory diseases. The purpose of this review is intended to highlight the molecular mechanisms of NETosis and its antimicrobial effect. Furthermore, a current status of NETosis in the pathogenesis of inflammatory and autoimmune disorders has been reviewed for better understanding.


Subject(s)
Autoimmune Diseases/immunology , Extracellular Traps , Infections/immunology , Neutrophils/physiology , Respiratory Distress Syndrome/immunology , Animals , Autoantibodies/metabolism , Humans , Immunity, Innate , Inflammation
12.
Biosens Bioelectron ; 105: 188-210, 2018 May 15.
Article in English | MEDLINE | ID: mdl-29412944

ABSTRACT

Vector-borne diseases are a major concern for human health globally, especially malaria in densely populated, less developed, tropical regions of the world. Malaria causes loss of human life and economic harm, and may spread through travelers to new regions. Though there are sufficient therapeutics available for the effective treatment and cure of malaria, it infects millions of people and claims several thousand lives every year. Early diagnosis of the infection can potentially prevent the spread of disease, save lives, and mitigate the financial impact. Conventional analytical techniques are being widely employed for malaria diagnosis, but with low sensitivity and selectivity. Due to the poor-resource settings where malaria outbreaks often occur, most conventional diagnostic methods are not affordable and hence not effective in detection and controlling the spread of the infection. However, biosensors have improved the scope for affordable malaria diagnosis. Advances in biotechnology and nanotechnology have provided novel recognition materials and transducer elements, discoveries which allow the fabrication of affordable biosensor platforms with improved attributes. The present work covers the advancement in biosensors with an introduction to malaria, followed by conventional methods of malaria diagnosis, malaria markers, novel recognition elements and the biosensor principle. Finally, a proactive role and a perspective on developed biosensor platforms are discussed with potential biomedical applications.


Subject(s)
Biosensing Techniques/instrumentation , Malaria/diagnosis , Plasmodium/isolation & purification , Animals , Biosensing Techniques/methods , Equipment Design , Humans , Nanotechnology/instrumentation , Nanotechnology/methods
13.
Biosens Bioelectron ; 80: 39-46, 2016 Jun 15.
Article in English | MEDLINE | ID: mdl-26803412

ABSTRACT

Rapid, ultrasensitive diagnostic/triaging kits for early detection of malarial parasites are critical for prevention of malarial epidemic, especially in developing and tropical countries. Unlike traditional microscopic diagnosis, these kits rely on the detection of antigens specific to malarial parasites. One such antigen which is routinely used in these diagnostic kits is Histidine-rich protein-2; a protein synthesized and released into the blood stream by the parasite Plasmodium falciparum. In this paper, we demonstrate an ultrasensitive nanobiosensor detection platform for Histidine-rich protein-2 having a limit of detection of attogram/ml. This nanobiosensor platform comprises of Mercaptopropylphosphonic acid functionalized copper doped zinc oxide nanofibers synthesized by electrospinning technique. Ultrasensitivity of attogram/ml can be attributed to the complimentary effects of Mercaptopropylphosphonic acid and copper doping in zinc oxide. Mercaptopropylphosphonic acid enhances the functional groups required for immobilizing antibody. Copper doping in zinc oxide not only increases the conductivity of the nanofibers but also pre-concentrates the target analyte onto the Mercaptopropylphosphonic acid treated nanofiber surface due to inherent electric field generated at the copper/zinc oxide heterojunction interface. The impedimetric detection response of copper-doped zinc oxide nanofiber modified electrode shows excellent sensitivity (28.5 kΩ/(gm/ml)/cm(2)) in the detection ranges of 10 ag/ml-10 µg/ml, and a detection limit of 6 attogram/ml. In addition, the proposed biosensor is highly selective to targeted HRP2 protein with a relative standard deviation of 1.9% in the presence of various interference of nonspecific molecules. To the best of our knowledge, this biosensor shows the lowest detection limit of malarial parasites reported in the literature spanning different nanomaterials and different detection mechanisms. Since the nanobiosensor platform is based on immunoassay technique, with a little modification, it can be extended for developing point-of-care diagnostic devices for several biomarkers of importance.


Subject(s)
Antigens, Protozoan/isolation & purification , Biosensing Techniques , Malaria, Falciparum/diagnosis , Plasmodium falciparum/isolation & purification , Protozoan Proteins/isolation & purification , Antigens, Protozoan/chemistry , Copper/chemistry , Early Diagnosis , Humans , Malaria, Falciparum/parasitology , Nanofibers/chemistry , Plasmodium falciparum/parasitology , Protozoan Proteins/chemistry , Zinc Oxide/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...