Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Proc Natl Acad Sci U S A ; 116(35): 17383-17392, 2019 08 27.
Article in English | MEDLINE | ID: mdl-31413197

ABSTRACT

Unfolded protein response (UPR) of the endoplasmic reticulum (UPRER) helps maintain proteostasis in the cell. The ability to mount an effective UPRER to external stress (iUPRER) decreases with age and is linked to the pathophysiology of multiple age-related disorders. Here, we show that a transient pharmacological ER stress, imposed early in development on Caenorhabditis elegans, enhances proteostasis, prevents iUPRER decline with age, and increases adult life span. Importantly, dietary restriction (DR), that has a conserved positive effect on life span, employs this mechanism of ER hormesis for longevity assurance. We found that only the IRE-1-XBP-1 branch of UPRER is required for the longevity effects, resulting in increased ER-associated degradation (ERAD) gene expression and degradation of ER resident proteins during DR. Further, both ER hormesis and DR protect against polyglutamine aggregation in an IRE-1-dependent manner. We show that the DR-specific FOXA transcription factor PHA-4 transcriptionally regulates the genes required for ER homeostasis and is required for ER preconditioning-induced life span extension. Finally, we show that ER hormesis improves proteostasis and viability in a mammalian cellular model of neurodegenerative disease. Together, our study identifies a mechanism by which DR offers its benefits and opens the possibility of using ER-targeted pharmacological interventions to mimic the prolongevity effects of DR.


Subject(s)
Caloric Restriction , Endoplasmic Reticulum/metabolism , Longevity , Unfolded Protein Response , Aging , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Endoplasmic Reticulum Stress , Homeostasis , Longevity/genetics
3.
Front Mol Neurosci ; 12: 35, 2019.
Article in English | MEDLINE | ID: mdl-30814928

ABSTRACT

The expression of ubiquitin ligase UBE3A is paternally imprinted in neurons and loss of function of maternally inherited UBE3A causes Angelman syndrome (AS), a neurodevelopmental disorder characterized by severe intellectual disability and motor disturbances. Over activation of UBE3A is also linked with autism. Mice deficient for maternal Ube3a (AS mice) exhibit various behavioral features of AS including cognitive and motor deficits although the underlying molecular mechanism is poorly understood. Here, we investigated possible involvement of miRNA in AS pathogenesis and identified miR-708 as one of the down-regulated miRNA in the brain of AS mice. This miR-708 targets endoplasmic reticulum resident protein neuronatin (a developmentally regulated protein in the brain) leading to decrease in intracellular Ca2+. Suppression of miR-708 or ectopic expression of neuronatin increased the level of intracellular Ca2+ and phosphorylation of CaMKIIα at Thr286. Neuronatin level was significantly increased in various brain regions of AS mice during embryonic and early postnatal days as well as in parvalbumin-positive GABAergic neurons during adulthood with respect to age-matched wild type controls. Differentiated cultured primary cortical neurons obtained from AS mice brain also exhibited higher expression of neuronatin, increased intracellular basal Ca2+ along with augmented phosphorylation of CaMKIIα at Thr286. These results indicate that miR-708/neuronatin mediated aberrant calcium signaling might be implicated in AS pathogenesis.

4.
Mol Neurobiol ; 55(8): 6337-6346, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29294248

ABSTRACT

Huntington's disease (HD) is an autosomal dominantly inherited neurodegenerative disorder caused by expansion of CAG repeats in the coding area of huntingtin gene. In the HD brain, mutant huntingtin protein goes through proteolysis, and its amino-terminal portion consisting of polyglutamine repeats accumulate as inclusions that result in progressive impairment of cellular protein quality control system. Here, we demonstrate that partial rescue of the defective protein quality control in HD model mouse by azadiradione (a bioactive limonoids found in the seed of Azadirachta indica) could potentially improve the disease pathology. Prolonged treatment of azadiradione to HD mice significantly improved the progressive deterioration in body weight, motor functioning along with extension of lifespan. Azadiradione-treated HD mice brain also exhibited considerable decrease in mutant huntingtin aggregates load and improvement of striatal pathology in comparison with age-matched saline-treated HD controls. Biochemical analysis further revealed upregulation and activation of not only HSF1 (master regulator of protein folding) but also Ube3a (an ubiquitin ligase involved in the clearance of mutant huntingtin) in azadiradione-treated mice. Our results indicate that azadiradione-mediated enhanced folding and clearance of mutant huntingtin might underlie improved disease pathology in HD mice and suggests that it could be a potential therapeutic molecule to delay the progression of HD.


Subject(s)
Disease Progression , Huntingtin Protein/metabolism , Huntington Disease/drug therapy , Huntington Disease/pathology , Limonins/therapeutic use , Animals , Atrophy , Disease Models, Animal , Dopamine and cAMP-Regulated Phosphoprotein 32/metabolism , Heat Shock Transcription Factors/metabolism , Huntington Disease/physiopathology , Limonins/administration & dosage , Limonins/pharmacology , Longevity , Mice, Transgenic , Models, Biological , Motor Activity/drug effects , Mutant Proteins/metabolism , Neostriatum/drug effects , Neostriatum/metabolism , Neostriatum/pathology , Neostriatum/physiopathology , Protein Aggregates/drug effects , Quality Control , Ubiquitin-Protein Ligases/metabolism , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...