Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Molecules ; 27(6)2022 Mar 11.
Article in English | MEDLINE | ID: mdl-35335195

ABSTRACT

Plumbagin, a hydroxy-1,4-naphthoquinone, confers neuroprotection via antioxidant and anti-inflammatory properties. The present study aimed to assess the effect of plumbagin on behavioral and memory deficits induced by intrahippocampal administration of Quinolinic acid (QA) in male Wistar rats and reveal the associated mechanisms. QA (300 nM/4 µL in Normal saline) was administered i.c.v. in the hippocampus. QA administration caused depression-like behavior (forced swim test and tail suspension tests), anxiety-like behavior (open field test and elevated plus maze), and elevated anhedonia behavior (sucrose preference test). Furthermore, oxidative-nitrosative stress (increased nitrite content and lipid peroxidation with reduction of GSH), inflammation (increased IL-1ß), cholinergic dysfunction, and mitochondrial complex (I, II, and IV) dysfunction were observed in the hippocampus region of QA-treated rats as compared to normal controls. Plumbagin (10 and 20 mg/kg; p.o.) treatment for 21 days significantly ameliorated behavioral and memory deficits in QA-administered rats. Moreover, plumbagin treatment restored the GSH level and reduced the MDA and nitrite level in the hippocampus. Furthermore, QA-induced cholinergic dysfunction and mitochondrial impairment were found to be ameliorated by plumbagin treatment. In conclusion, our results suggested that plumbagin offers a neuroprotective potential that could serve as a promising pharmacological approach to mitigate neurobehavioral changes associated with neurodegeneration.


Subject(s)
Depression , Quinolinic Acid , Animals , Behavior, Animal , Depression/chemically induced , Depression/drug therapy , Male , Memory Disorders/chemically induced , Memory Disorders/drug therapy , Memory Disorders/prevention & control , Naphthoquinones , Oxidative Stress , Rats , Rats, Wistar
2.
Molecules ; 26(19)2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34641339

ABSTRACT

The COVID-19 pandemic needs no introduction at present. Only a few treatments are available for this disease, including remdesivir and favipiravir. Accordingly, the pharmaceutical industry is striving to develop new treatments for COVID-19. Molnupiravir, an orally active RdRp inhibitor, is in a phase 3 clinical trial against COVID-19. The objective of this review article is to enlighten the researchers working on COVID-19 about the discovery, recent developments, and patents related to molnupiravir. Molnupiravir was originally developed for the treatment of influenza at Emory University, USA. However, this drug has also demonstrated activity against a variety of viruses, including SARS-CoV-2. Now it is being jointly developed by Emory University, Ridgeback Biotherapeutics, and Merck to treat COVID-19. The published clinical data indicate a good safety profile, tolerability, and oral bioavailability of molnupiravir in humans. The patient-compliant oral dosage form of molnupiravir may hit the market in the first or second quarter of 2022. The patent data of molnupiravir revealed its granted compound patent and process-related patent applications. We also anticipate patent filing related to oral dosage forms, inhalers, and a combination of molnupiravir with marketed drugs like remdesivir, favipiravir, and baricitinib. The current pandemic demands a patient compliant, safe, tolerable, and orally effective COVID-19 treatment. The authors believe that molnupiravir meets these requirements and is a breakthrough COVID-19 treatment.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Cytidine/analogs & derivatives , Drug Discovery , Hydroxylamines/therapeutic use , SARS-CoV-2/drug effects , Administration, Oral , Animals , Antiviral Agents/administration & dosage , Antiviral Agents/chemistry , Clinical Trials as Topic , Cytidine/administration & dosage , Cytidine/chemistry , Cytidine/therapeutic use , Humans , Hydroxylamines/administration & dosage , Hydroxylamines/chemistry , Patents as Topic , RNA-Directed DNA Polymerase/metabolism , Reverse Transcriptase Inhibitors/administration & dosage , Reverse Transcriptase Inhibitors/chemistry , Reverse Transcriptase Inhibitors/therapeutic use , SARS-CoV-2/enzymology , Viral Proteins/antagonists & inhibitors , Viral Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL