Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem ; 405(Pt B): 134909, 2023 Mar 30.
Article in English | MEDLINE | ID: mdl-36442247

ABSTRACT

Cold is the best means of prolonging fruit storage. However, tropical fruit are susceptible to cold storage. The mode of action of mango fruit tolerance to suboptimal cold temperature of 7 or 10 °C after postharvest application of 8 mM phenylalanine was investigated using transcriptomic and metabolomic analyses of mango fruit during suboptimal cold storage. Phenylalanine-treated fruit had less chilling injuries-black spot and pitting electrolyte leakage,-and reduced decay after suboptimal cold storage. Phenylalanine treatment induced genes related to plant-pathogen interactions, plant hormone signal transduction, and the phenylpropanoid pathway, increasing the levels of the flavonoids quercetin and kaempferol glycosides and anthocyanins, and antioxidant content. Reduced oxidation led to lower lipid peroxidation, and a reduction in fatty acid-degradation products, e.g., volatile aldehydes. Treatment with phenylalanine, therefore, enhances chilling tolerance of mango fruit through regulation of metabolic and defense-related pathways, maintaining high levels of flavonoids, and antioxidants enzyme activity, and reducing H2O2 content, lipid peroxidation, and volatile aldehydes.


Subject(s)
Mangifera , Mangifera/genetics , Temperature , Phenylalanine , Anthocyanins , Fruit/genetics , Flavonoids , Aldehydes , Antioxidants
2.
Antioxidants (Basel) ; 11(3)2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35326141

ABSTRACT

Anthocyanins are secondary metabolites responsible for the red coloration of mango and apple. The red color of the peel is essential for the fruit's marketability. Anthocyanins and flavonols are synthesized via the flavonoid pathway initiated from phenylalanine (Phe). Anthocyanins and flavonols have antioxidant, antifungal, and health-promoting properties. To determine if the external treatment of apple and mango trees with Phe can induce the red color of the fruit peel, the orchards were sprayed 1 to 4 weeks before the harvest of mango (cv. Kent, Shelly, and Tommy Atkins) and apple fruit (cv. Cripps pink, Gala and Starking Delicious). Preharvest Phe treatment increased the red coloring intensity and red surface area of both mango and apple fruit that was exposed to sunlight at the orchard. The best application of Phe was 2-4 weeks preharvest at a concentration of 0.12%, while a higher concentration did not have an additive effect. A combination of Phe and the positive control of prohydrojasmon (PDJ) or several applications of Phe did not have a significant added value on the increase in red color. Phe treatment increased total flavonoid, anthocyanin contents, and antioxidant activity in treated fruit compared to control fruits. High Performance Liquid Chromatography analysis of the peel of Phe treated 'Cripps pink' apples showed an increase in total flavonols and anthocyanins with no effect on the compound composition. HPLC analysis of 'Kent' mango fruit peel showed that Phe treatment had almost no effect on total flavonols content while significantly increasing the level of anthocyanins was observed. Thus preharvest application of Phe combined with sunlight exposure offers an eco-friendly, alternative treatment to improve one of the most essential quality traits-fruit color.

3.
Int J Mol Sci ; 22(17)2021 Aug 24.
Article in English | MEDLINE | ID: mdl-34502020

ABSTRACT

Metabolic regulation is the key mechanism implicated in plants maintaining cell osmotic potential under drought stress. Understanding drought stress tolerance in plants will have a significant impact on food security in the face of increasingly harsh climatic conditions. Plant primary and secondary metabolites and metabolic genes are key factors in drought tolerance through their involvement in diverse metabolic pathways. Physio-biochemical and molecular strategies involved in plant tolerance mechanisms could be exploited to increase plant survival under drought stress. This review summarizes the most updated findings on primary and secondary metabolites involved in drought stress. We also examine the application of useful metabolic genes and their molecular responses to drought tolerance in plants and discuss possible strategies to help plants to counteract unfavorable drought periods.


Subject(s)
Droughts , Metabolomics , Plants/genetics , Stress, Physiological , Gene Expression Regulation, Plant , Plant Physiological Phenomena , Plants/metabolism
4.
Foods ; 9(5)2020 May 18.
Article in English | MEDLINE | ID: mdl-32443417

ABSTRACT

More than 40% of harvested fruit is lost, largely due to decay. In parallel, restrictions on postharvest fungicides call for eco-friendly alternatives. Fruit's natural resistance depends mainly on flavonoids and anthocyanins-which have antioxidant and antifungal activity-synthesized from the phenylpropanoid pathway with phenylalanine as a precursor. We hypothesized that phenylalanine could induce fruit's natural defense response and tolerance to fungal pathogens. The postharvest application of phenylalanine to mango and avocado fruit reduced anthracnose and stem-end rot caused by Colletotrichum gloeosporioides and Lasiodiplodia theobromae, respectively. The postharvest application of phenylalanine to citrus fruit reduced green mold caused by Penicillium digitatum. The optimal phenylalanine concentrations for postharvest application were 6 mM for citrus fruits and 8 mM for mangoes and avocadoes. The preharvest application of phenylalanine to strawberries, mangoes, and citrus fruits also reduced postharvest decay. Interestingly, citrus fruit resistance to P. digitatum inoculated immediately after phenylalanine application was not improved, whereas inoculation performed 2 days after phenylalanine treatment induced the defense response. Five hours after the treatment, no phenylalanine residue was detected on/in the fruit, probably due to rapid phenylalanine metabolism. Additionally, in vitro testing showed no inhibitory effect of phenylalanine on conidial germination. Altogether, we characterized a new inducer of the fruit defense response-phenylalanine. Preharvest or postharvest application to fruit led to the inhibition of fungal pathogen-induced postharvest decay, suggesting that the application of phenylalanine could become an eco-friendly and healthy alternative to fungicides.

SELECTION OF CITATIONS
SEARCH DETAIL
...