Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38421484

ABSTRACT

The field of nanotechnology has the mysterious capacity to reform every subject it touches. Nanotechnology advancements have already altered a variety of scientific and industrial fields. Nanoparticles (NPs) with sizes ranging from 1 to 100 nm (nm) are of great scientific and commercial interest. Their functions and characteristics differ significantly from those of bulk metal. Commercial quantities of NPs are synthesized using chemical or physical methods. The use of the physical and chemical approaches remained popular for many years; however, the recognition of their hazardous effects on human well-being and conditions influenced serious world perspectives for the researchers. There is a growing need in this field for simple, non-toxic, clean, and environmentally safe nanoparticle production methods to reduce environmental impact and waste and increase energy productivity. Microbial nanotechnology is relatively a new field. Using various microorganisms, a wide range of nanoparticles with well-defined chemical composition, morphology, and size have been synthesized, and their applications in a wide range of cutting-edge technological areas have been investigated. Green synthesis of the nanoparticles is cost-efficient and requires low maintenance. The present review highlights the synthesis of the nanoparticles by different microbes, their characterization, and their biotechnological potential. It further deals with the applications in biomedical, food, and textile industries as well as its role in biosensing, waste recycling, and biofuel production.

2.
Front Plant Sci ; 14: 1212135, 2023.
Article in English | MEDLINE | ID: mdl-37502703

ABSTRACT

Late blight (Phytophthora infestans) is a serious disease of potatoes. The aim of this study was to screen wild potato species and identify differentially expressed genes (DEGs) associated with late blight resistance. Wild potato species such as PIN45 (Solanum pinnatisectum), CPH62 (Solanum cardiophyllum), JAM07 (Solanum jamesii), MCD24 (Solanum microdontum), PLD47 (Solanum polyadenium), and cv. Kufri Bahar (control) were tested by artificial inoculation of P. infestans under controlled conditions. Transcriptomes of the leaf tissues (96 h post-inoculation) were sequenced using the Illumina platform. Statistically significant (p < 0.05) DEGs were analyzed in wild species by comparison with the control, and upregulated (>2 log2 fold change, FC) and downregulated (<-2 log2 FC) genes were identified. DEGs were functionally characterized with Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Selected genes were validated by real-time PCR analysis to confirm RNA-seq results. We identified some upregulated genes associated with late blight resistance in wild species such as cytochrome P450, proline-rich protein, MYB transcription factor MYB139, ankyrin repeat-containing protein, and LRR receptor-like serine/threonine-protein kinase in PIN45; glucosyltransferase, fructose-bisphosphate aldolase, and phytophthora-inhibited protease 1 in CPH62; steroid binding protein and cysteine proteinase 3 in JAM07; glycine-rich cell wall structural protein 1 and RING finger protein in MCD24; and cysteine proteinase 3 and major latex protein in PLD47. On the other hand, downregulated genes in these species were snakin-2 and WRKY transcription factor 3 in PIN45; lichenase and phenylalanine ammonia-lyase 1 in CPH62; metallothionein and LRR receptor-like serine/threonine-protein kinase in JAM07; UDP-glucoronosyl/UDP-glucosyl transferase family protein and steroid binding protein in MCD24; and cytoplasmic small heat shock protein class I and phosphatase PLD47. Our study identified highly resistant wild potato species and underlying genes such as disease resistance, stress response, phytohormones, and transcription factors (e.g., MYB, WRKY, AP2/ERF, and AN1) associated with late blight resistance in wild potato species.

3.
Curr Microbiol ; 80(6): 192, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37101055

ABSTRACT

The quest for increasing agricultural yield due to increasing population pressure and demands for healthy food has inevitably led to the indiscriminate use of chemical fertilizers. On the contrary, the exposure of the crops to abiotic stress and biotic stress interferes with crop growth further hindering the productivity. Sustainable agricultural practices are of major importance to enhance production and feed the rising population. The use of plant growth promoting (PGP) rhizospheric microbes is emerging as an efficient approach to ameliorate global dependence on chemicals, improve stress tolerance of plants, boost up growth and ensure food security. Rhizosphere associated microbiomes promote the growth by enhancing the uptake of the nutrients, producing plant growth regulators, iron chelating complexes, shaping the root system under stress conditions and decreasing the levels of inhibitory ethylene concentrations and protecting plants from oxidative stress. Plant growth-promoting rhizospheric microbes belong to diverse range of genera including Acinetobacter, Achromobacter, Aspergillus, Bacillus, Burkholderia, Flavobacterium, Klebsiella, Micrococcus, Penicillium, Pseudomonas, Serratia and Trichoderma. Plant growth promoting microbes are an interesting aspect of research for scientific community and a number of formulations of beneficial microbes are also commercially available. Thus, recent progress in our understanding on rhizospheric microbiomes along with their major roles and mechanisms of action under natural and stressful conditions should facilitate their application as a reliable component in the management of sustainable agricultural system. This review highlights the diversity of plant growth promoting rhizospheric microbes, their mechanisms of plant growth promotion, their role under biotic and abiotic stress and status of biofertilizers. The article further focuses on the role of omics approaches in plant growth promoting rhizospheric microbes and draft genome of PGP microbes.


Subject(s)
Agriculture , Microbiota , Agriculture/methods , Crops, Agricultural/microbiology , Plant Growth Regulators , Biodiversity , Soil Microbiology
4.
J Org Chem ; 87(13): 8396-8405, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35696105

ABSTRACT

A practical and straightforward strategy for the synthesis of 3-acylimino-3H-1,2-dithiol derivatives via a metal-free annulation reaction of alkynylnitriles with thiocarboxylic acids mediated by ionic liquids [BMIM]Br has been reported. This operationally simple protocol offers an easy and rapid access to a library of dithiol derivatives in moderate to good yields. The mechanistic studies show a benzoyldithio anion addition to alkynylnitriles followed by an annulation reaction through the involvement of a disulfide moiety as the key intermediate.


Subject(s)
Ionic Liquids , Acids , Disulfides , Molecular Structure , Toluene/analogs & derivatives
5.
Curr Pharm Biotechnol ; 22(15): 2085-2093, 2021.
Article in English | MEDLINE | ID: mdl-33430724

ABSTRACT

AIM: The aim of present investigation is to identify the potential targets for Thymidylate Synthase and Amp-C ß-lactamase from non-alkaloidal fractions of Moringa oleifera leaves. BACKGROUND: Bioactive constituents from medicinal plants, either as pure compounds or as crude forms, provide vast opportunities for new drug discoveries. Due to an increasing demand for chemical diversity in screening programs, seeking therapeutic drugs from natural products, mainly from edible plants, has grown throughout the world. Moringa oleifera has an impressive range of medicinal uses with high nutritional value. Therefore, this medicinal plant has been used widely in traditional Indian medicine for anti-inflammation, anticancer and antibacterial infections. OBJECTIVES: The primary objective is to identify the phytoconstituents present in the maximum proportion in non-alkaloidal fractions of ethanolic leaf extract of Moringa oleifera. Then, the identified phytoconstituents were used to ensure the potential target molecules for binding affinity towards the target proteins viz. Thymidylate Synthase (1HVY) and Amp-C beta-lactamase (1FSY) by docking analysis. METHODS: In present investigation, ethanolic extract of Moringa leaves was prepared and then fractionated on the basis of presence/absence of alkaloids. The antimicrobial activity of different fractions of ethanolic leaf extract was evaluated against various pathogens. Later, after this, bioactive molecules present in the non-alkaloidal fractions of ethanolic leaf extract were accomplished through GC-MS analysis, and finally, the identified phytocompounds were analyzed through docking studies to evaluate their affinity for target proteins viz. Thymidylate Synthase (1HVY) and Amp-C ß-lactamase (1FSY). RESULTS: The antimicrobial activity of non-alkaloidal fractions of ethanolic leaf extract was evaluated against various pathogens which exhibited significant antimicrobial activity. Twenty phytocompounds were identified as gas chromatogram of non-alkaloidal fractions (chloroform and ethyl acetate) of leaf extract of M. oleifera; Four most prominent compounds having highest peak area percentage were identified as Ethane, 1,1,2,2-tetrachloro, (46.45%) 2-Propanone, 1,1,3-trichloro, (13.77%) Heptasiloxane, 1,1,3,3,5,5,7,7,9,9,11,11,13,13-tetradecamethyl (17.87%) and 2,4-Dichlorodiphenylsulfone (17.64%). Other notable compounds were 9,12-Octadecadienoic acid (Z,Z) (14.06%), Oleic acid, 3- (octadecyloxy)propyl ester (12.41%), Fluoranthene (6.98%), Phenol, 2,4-bis( 1,1-dimethylethyl) (4.16%) and Phthalic acid, butyl nonyl ester (3.47%). Only, five compounds viz. 2,6-Bis(1,1- dimethylethyl)phenol(C1), Dodecamethylcyclohexasiloxane(C2), Chlorodimethylethylsilane(C3), Fluoranthene(C4) and Hexadecanoic acid, methyl ester(C5) showed the maximum interaction with 1HVY with highest docking score of -178.51Kcal/mol, - 231.65Kcal/mol, -129.18Kcal/mol, - 173.10Kcal/mol and -220.78Kcal/mol, respectively. In addition, three compounds viz. Dodecamethylcyclohexasiloxane( C2), Fluoranthene(C4) and Hexadecanoic acid, methyl ester(C5) showed the maximum interaction with 1FSY with highest docking score of -137.23Kcal/mol, -54.34Kcal/mol and -153.84Kcal/mol, respectively. CONCLUSION: Moringa plant may provide incredible capabilities to develop pharmacological products. The present finding demonstrated that Moringa oleifera is an excellent plant candidate to be used for improving the health of communities.


Subject(s)
Alkaloids , Moringa oleifera , Plant Extracts , Thymidylate Synthase/antagonists & inhibitors , beta-Lactamase Inhibitors/pharmacology , Alkaloids/pharmacology , Moringa oleifera/chemistry , Plant Extracts/pharmacology , Plant Leaves/chemistry , beta-Lactamases
6.
Recent Pat Biotechnol ; 14(4): 283-294, 2020.
Article in English | MEDLINE | ID: mdl-32767933

ABSTRACT

BACKGROUND: Sclerotinia sclerotiorum is a ubiquitous fungal pathogen infecting more than 400 plant species. Sclerotinia stem rot is known to cause as high as 100% crop loss in many cases. Currently, chemical fungicides are the only known solution to this problem. Thus, there is an urgent need for developing environment-friendly alternatives for controlling this pathogen. The review of published articles revealed that a number of mycoviruses with the potential of a biocontrol agent against Sclerotinia had been identified from different parts of the world. OBJECTIVE: The present investigation describes the isolation and characterization of isolates of S. sclerotiorum infecting cauliflower, peas, and mustard for the presence of a potent mycovirus from lower Himachal region of India. METHODS: Various infected fields were visited and samples in the form of sclerotia were collected. Various isolates of S. sclerotiorum were obtained, and putative hypovirulent isolates were screened. Thereafter, hypovirulent strains were chosen and mycovirus isolation was performed. Finally, isolates showing an extra nucleic acid band were used for mycovirus isolation and further characterization. Curing of mycovirus was used to confirm if altered phenotype was due to the presence of this virus. RESULTS: A ssDNA mycovirus was identified and confirmed from the growth defective isolate. CONCLUSION: This mycovirus can in turn act as a biocontrol agent, thus reducing dependency on chemical fungicides and can also be developed in the form of a patent once completely characterized and formulated. To our knowledge, this is the first report on mycovirus isolation from any Sclerotinia sclerotiorumisolate from India.


Subject(s)
Ascomycota , Biological Control Agents , Brassica/microbiology , Fungal Viruses , Plant Diseases , Ascomycota/pathogenicity , Ascomycota/virology , India , Plant Diseases/microbiology , Plant Diseases/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL
...