Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Angew Chem Int Ed Engl ; 63(5): e202316630, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38063060

ABSTRACT

Controlled assembly of nanoparticles into well-defined assembled architectures through precise manipulation of spatial arrangement and interactions allows the development of advanced mesoscale materials with tailored structures, hierarchical functionalities, and enhanced properties. Despite remarkable advancements, the controlled assembly of highly anisotropic 2Dnanosheets is significantly challenging, primarily due to the limited availability of selective edge-to-edge connectivity compared to the abundant large faces. Innovative strategies are needed to unlock the full potential of 2D-nanomaterialsin self-assembled structures with distinct and desirable properties. This research unveils the discovery of controlled self-assembly of 2D-silica nanosheets (2D-SiNSs) into hollow micron-sized soccer ball-like shells (SA-SiMS). The assembly is driven by the physical flexibility of the 2D-SiNSs and the differential electricdouble-layer charge gradient creating electrostatic bias on the edge and face regions. The resulting SA-SiMS structures exhibit high mechanical stability, even at high-temperatures, and exhibit excellent performance as catalyst support in the dry reforming of methane. The SA-SiMS structures facilitate improved mass transport, leading to enhanced reaction rates, while the thin silica shell prevents sintering of small catalyst nanocrystals, thereby preventing coke formation. This discovery sheds light on the controllable self-assembly of 2D nanomaterials and provides insights into the design and synthesis of advanced mesoscale materials with tailored properties.

2.
Nat Commun ; 14(1): 7667, 2023 Nov 23.
Article in English | MEDLINE | ID: mdl-37996475

ABSTRACT

Metal nanoparticle-organic interfaces are common but remain elusive for controlling reactions due to the complex interactions of randomly formed ligand-layers. This paper presents an approach for enhancing the selectivity of catalytic reactions by constructing a skin-like few-nanometre ultrathin crystalline porous covalent organic overlayer on a plasmonic nanoparticle surface. This organic overlayer features a highly ordered layout of pore openings that facilitates molecule entry without any surface poisoning effects and simultaneously endows favourable electronic effects to control molecular adsorption-desorption. Conformal organic overlayers are synthesised through the plasmonic oxidative activation and intermolecular covalent crosslinking of molecular units. We develop a light-operated multicomponent interfaced plasmonic catalytic platform comprising Pd-modified gold nanoparticles inside hollow silica to achieve the highly efficient and selective semihydrogenation of alkynes. This approach demonstrates a way to control molecular adsorption behaviours on metal surfaces, breaking the linear scaling relationship and simultaneously enhancing activity and selectivity.

3.
Small ; 19(35): e2301190, 2023 08.
Article in English | MEDLINE | ID: mdl-37096899

ABSTRACT

Silicon nanostructures (SiNSs) can provide multifaceted bioapplications; but preserving their subhundred nm size during high-temperature silica-to-silicon conversion is the major bottleneck. The SC-SSR utilizes an interior metal-silicide stratum space at a predetermined radial distance inside silica nanosphere to guide the magnesiothermic reduction reaction (MTR)-mediated synthesis of hollow and porous SiNSs. In depth mechanistic study explores solid-to-hollow transformation encompassing predefined radial boundary through the participation of metal-silicide species directing the in-situ formed Si-phase accumulation within the narrow stratum. Evolving thin-porous Si-shell remains well protected by the in-situ segregated MgO emerging as a protective cast against the heat-induced deformation and interparticle sintering. Retrieved hydrophilic SiNSs (<100 nm) can be conveniently processed in different biomedia as colloidal solutions and endocytosized inside cells as photoluminescence (PL)-based bioimaging probes. Inside the cell, rattle-like SiNSs encapsulated with Pd nanocrystals can function as biorthogonal nanoreactors to catalyze intracellular synthesis of probe molecules through C-C cross coupling reaction.


Subject(s)
Nanospheres , Nanostructures , Silicon/chemistry , Nanostructures/chemistry , Silicon Dioxide/chemistry , Nanospheres/chemistry , Porosity
4.
Angew Chem Int Ed Engl ; 62(28): e202303890, 2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37071554

ABSTRACT

Herein, by choosing few-nm-thin two-dimensional (2D) nanocrystals of MOF-5 containing in-planner square lattices as a modular platform, a crystal lattice-guided wet-chemical etching has been rationally accomplished. As a result, two attractive pore patterns carrying Euclidean curvatures; precisely, plus(+)-shaped and fractal-patterned pores via ⟨100⟩ and ⟨110⟩ directional etching, respectively, are regulated in contrast to habitually formed spherical-shaped random etches on MOF surface. In agreement with the theoretical calculations, a diffusion-limited etching process has been optimized to devise high-yield of size-tunable fractal-pores on the MOF surface that tenders for a compatibly high payload of catalytic ReI -complexes using the existing large edge area once modified into a free amine-group-exposed inner pore surface. Finally, on benefiting from the long-range fractal opening in 2D MOF support structure, while loaded on an electrode surface, a facilitated cross-interface charge-transportation and well-exposure of immobilized ReI -catalysts are anticipated, thus realizing enhanced activity and stability of the supported catalyst in photoelectrochemical CO2 -to-CO reduction.

5.
Nano Lett ; 22(15): 6428-6434, 2022 08 10.
Article in English | MEDLINE | ID: mdl-35748753

ABSTRACT

In tandem catalytic systems, controlling the reaction steps and side reactions is extremely challenging. Here, we demonstrate a nanoreactor platform comprising magnetic- and plasmonic-coupled catalytic modules that synchronizes reaction steps at unconnected neighboring reaction sites via decoupled nanolocalized energy harvested using distinct antennae reactors while minimizing the interconflicting effects. As was desired, the course of the reaction and product yields can be controlled by a convenient remote operation of alternating magnetic field (AMF) and near-infrared light (NIR). Following this strategy, a tandem reaction involving [Pd]-catalyzed Suzuki-Miyaura C-C cross-coupling and [Pt]-catalyzed aerobic alcohol oxidation enabled an excellent yield of cinnamaldehyde (ca. 95%) by overcoming the risk of side reactions. The customization scope for using different catalytic metals (Pt, Pd, Ru, and Rh) with in situ control over product release through remotely operable benign energy sources opens avenues for designing diverse catalytic schemes for targeted applications.


Subject(s)
Metals , Nanotechnology , Catalysis , Magnetic Phenomena , Physical Phenomena
6.
Chem Rev ; 122(15): 12748-12863, 2022 08 10.
Article in English | MEDLINE | ID: mdl-35715344

ABSTRACT

Nanomaterials (NMs) with unique structures and compositions can give rise to exotic physicochemical properties and applications. Despite the advancement in solution-based methods, scalable access to a wide range of crystal phases and intricate compositions is still challenging. Solid-state reaction (SSR) syntheses have high potential owing to their flexibility toward multielemental phases under feasibly high temperatures and solvent-free conditions as well as their scalability and simplicity. Controlling the nanoscale features through SSRs demands a strategic nanospace-confinement approach due to the risk of heat-induced reshaping and sintering. Here, we describe advanced SSR strategies for NM synthesis, focusing on mechanistic insights, novel nanoscale phenomena, and underlying principles using a series of examples under different categories. After introducing the history of classical SSRs, key theories, and definitions central to the topic, we categorize various modern SSR strategies based on the surrounding solid-state media used for nanostructure growth, conversion, and migration under nanospace or dimensional confinement. This comprehensive review will advance the quest for new materials design, synthesis, and applications.


Subject(s)
Nanostructures , Nanostructures/chemistry , Phototherapy
7.
Nano Lett ; 22(3): 1159-1166, 2022 Feb 09.
Article in English | MEDLINE | ID: mdl-35088595

ABSTRACT

Despite the enormous applications of and fundamental scientific interest in amorphous hollow-silica nanostructures (h-SiNSs), their synthesis in crystal-like nonspherical polygonal architectures is challenging. Herein, we present a facile one-shot synthetic procedure for various unconventional h-SiNSs with controllable surface curvatures (concave, convex, or angular), symmetries (spherical, polygonal, or Janus), and interior architectures (open or closed walls) by the addition of a metal salt and implementing kinetic handles of silica precursor (silanes/ammonia) concentrations and reverse-micellar volume. During the silica growth, we identified the key role of transiently in situ crystallized metal coordination complexes as a nanopolyhedral "ghost template", which provides facet-selective interactions with amino-silica monomers and guides the differential silica growth that produces different h-SiNSs. Additionally, crystal-like well-defined polygonal h-SiNSs with flat surfaces, assembled as highly ordered close-packed octahedral mesoscale materials (ca. 3 µm) where h-SiNSs with different nanoarchitectures act as building units (ca. 150 nm) to construct customizable cavities and nanospaces, differ from conventionally assembled materials.

8.
J Am Chem Soc ; 143(28): 10582-10589, 2021 Jul 21.
Article in English | MEDLINE | ID: mdl-34213897

ABSTRACT

Despite the enormous application potential, methods for conformal few-atomic-layer deposition on colloidal nanocrystals (NCs) are scarce. Similar to the process of lamination, we introduce a "confine and shine" strategy to homogeneously modify the different surface curvatures of plasmonic NCs with ultrathin conformal layers of diverse catalytic noble metals. This self-limited epitaxial skinlike metal growth harvests the localized surface plasmon resonance to induce reduction chemistry directly on the NC surface, confined inside hollow silica. This strategy avoids any kinetic anisotropic metal deposition. Unlike the conventional thick, anisotropic, and dendritic shells, which show severe nonradiative damping, the skinlike metal lamination preserves the key plasmonic properties of the core NCs. Consequently, the plasmonic-catalytic hybrid nanoreactors can carry out a variety of organic reactions with impressive rates.

9.
Angew Chem Int Ed Engl ; 60(32): 17579-17586, 2021 08 02.
Article in English | MEDLINE | ID: mdl-34107153

ABSTRACT

Nanostructures converting chemical energy to mechanical work by using benign metabolic fuels, have huge implications in biomedical science. Here, we introduce Au/Pt-based Janus nanostructures, resembling to "egg-in-nest" morphology (Au/Pt-ENs), showing enhanced motion as a result of dual enzyme-relay-like catalytic cascade in physiological biomedia, and in turn showing molecular-laden transport to living cells. We developed dynamic-casting approach using silica yolk-shell nanoreactors: first, to install a large Au-seed fixing the silica-yolk aside while providing the anisotropically confined concave hollow nanospace to grow curved Pt-dendritic networks. Owing to the intimately interfaced Au and Pt catalytic sites integrated in a unique anisotropic nest-like morphology, Au/Pt-ENs exhibited high diffusion rates and displacements as the result of glucose-converted oxygen concentration gradient. High diffusiophoresis in cell culture media increased the nanomotor-membrane interaction events, in turn facilitated the cell internalization. In addition, the porous network of Au/Pt-ENs facilitated the drug-molecule cargo loading and delivery to the living cells.


Subject(s)
Drug Carriers/chemistry , Glucose/metabolism , Nanoparticles/chemistry , Nanotechnology/methods , Adsorption , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Biological Transport , Catalysis , Cell Line, Tumor , Doxorubicin/chemistry , Doxorubicin/pharmacology , Drug Liberation , Glucose/chemistry , Gold/chemistry , Humans , Motion , Oxidation-Reduction , Platinum/chemistry , Porosity , Silicon Dioxide/chemistry
10.
Angew Chem Int Ed Engl ; 60(30): 16337-16342, 2021 07 19.
Article in English | MEDLINE | ID: mdl-34041834

ABSTRACT

Nanodevices, harvesting the power of synthetic catalysts and enzymes to perform enantioselective synthesis inside cell, have never been reported. Here, we synthesized round bottom jar-like silica nanostructures (SiJARs) with a chemo-responsive metal-silicate lid. This was isolated as an intermediate structure during highly controlled solid-state nanocrystal-conversion at the arc-section of silica shell. Different catalytic noble metals (Pt, Pd, Ru) were selectively modified on the lid-section through galvanic reactions. And, lid aperture-opening was regulated by mild acidic conditions or intracellular environment which accommodated the metal nanocrystals and enzymes, and in turn created an open-mouth nanoreactor. Distinct from the free enzymes, SiJARs performed asymmetric aldol reactions with high activity and enantioselectivity (yield >99 %, ee=95 %) and also functioned as the artificial catalytic organelles inside living cells. This work bridges the enormous potential of sophisticated nanocrystal-conversion chemistry and advanced platforms for new-to-nature catalysis.


Subject(s)
Biomimetic Materials/chemistry , Enzymes/chemistry , Metal Nanoparticles/chemistry , Metals/chemistry , Silicon Dioxide/chemistry , Aldehydes/chemistry , Catalysis , Hot Temperature , Manganese Compounds/chemistry , Oxides/chemistry , Palladium/chemistry , Platinum/chemistry , Ruthenium/chemistry , Stereoisomerism
11.
J Colloid Interface Sci ; 597: 94-103, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33862450

ABSTRACT

In this study, a Janus Fe/C3N4 micromotor driven by a chromate-hydrogen peroxide (Cr(VI)/H2O2) redox system was developed and its movement was analyzed. The motion of the micromotor was tracked via nanoparticle tracking analysis (NTA) and the corresponding diffusion coefficients (D) were determined. The NTA results revealed that D = 0 in water in the absence of additives (Cr(VI) or H2O2). The addition of H2O2 resulted in an increase in D from 0 to 12 × 106 nm2 s-1, which further increased to 20 × 106, 26.5 × 106, 29 × 106, and 44 × 106 nm2 s-1 with the addition of 0.5, 1, 2, and 5 ppm of Cr(VI), respectively. Cr(VI) alone did not efficiently propel the Fe/C3N4-based micromotor. Therefore, it was proposed that the Cr(VI)/H2O2 redox system generates O2, which plays a major role in the movement of the C3N4-based micromotor. In addition, the formation of reactive species, such as OH and 1O2, was confirmed through electron spin resonance experiments. The reactive species efficiently degraded sulfamethaxazole (SMX), an organic pollutant, as demonstrated through degradation studies and product analyses. The effects of various parameters, such as H2O2 concentration, Cr(VI) concentration, and initial pH on the movement of micromotor and degradation of SMX were also documented.

12.
Nano Lett ; 21(1): 279-287, 2021 01 13.
Article in English | MEDLINE | ID: mdl-33306397

ABSTRACT

Next-generation catalysts are urgently needed to tackle the global challenge of antimicrobial resistance. Existing antimicrobials cannot function in the complex and stressful chemical conditions found in biofilms, and as a result, they are unable to infiltrate, diffuse into, and eradicate the biofilm and its associated matrix. Here, we introduce mixed-FeCo-oxide-based surface-textured nanostructures (MTex) as highly efficient magneto-catalytic platforms. These systems can produce defensive ROS over a broad pH range and can effectively diffuse into the biofilm and kill the embedded bacteria. Because the nanostructures are magnetic, biofilm debris can be scraped out of the microchannels. The key antifouling efficacy of MTex originates from the unique surface topography that resembles that of a ploughed field. These are captured as stable textured intermediates during the oxidative annealing and solid-state conversion of ß-FeOOH nanocrystals. These nanoscale surfaces will advance progress toward developing a broad array of new enzyme-like properties at the nanobio interface.


Subject(s)
Anti-Infective Agents , Metal Nanoparticles , Biofilms , Oxides , Reactive Oxygen Species
13.
Nano Lett ; 20(10): 6981-6988, 2020 10 14.
Article in English | MEDLINE | ID: mdl-32633963

ABSTRACT

Nanoreactors, in which the reactions are remotely controlled by magnetic fields, are potentially valuable in bioorthogonal chemistry for future applications. Here, we develop a silica-confined magnetothermia-induced nanoreactor (MAG-NER) by selectively growing Pd nanocrystals on a preinstalled iron-oxide core inside a hollow silica nanoshell. The growth is achieved by magnetic induction. The interfacial catalytic site is activated by stimulating localized magnetothermia, and nanocompartmentalization is realized by the size-selective porous silica. Therefore, MAG-NER can be conveniently used in complex biomedia and can even be internalized to living cells, realizing an on-demand, high-performance intramolecular carbocyclization reaction by remote operation without compromising the cell viability. This work opens avenues for the design of advanced nanoreactors that complement and augment the existing bioorthogonal chemical tools.


Subject(s)
Nanoshells , Silicon Dioxide , Catalysis , Chemistry Techniques, Synthetic , Nanotechnology
14.
Angew Chem Int Ed Engl ; 59(24): 9460-9469, 2020 Jun 08.
Article in English | MEDLINE | ID: mdl-32237185

ABSTRACT

Interest and challenges remain in designing and synthesizing catalysts with nature-like complexity at few-nm scale to harness unprecedented functionalities by using sustainable solar light. We introduce "nanocatalosomes"-a bio-inspired bilayer-vesicular design of nanoreactor with metallic bilayer shell-in-shell structure, having numerous controllable confined cavities within few-nm interlayer space, customizable with different noble metals. The intershell-confined plasmonically coupled hot-nanospaces within the few-nm cavities play a pivotal role in harnessing catalytic effects for various organic transformations, as demonstrated by "acceptorless dehydrogenation", "Suzuki-Miyaura cross-coupling" and "alkynyl annulation" affording clean conversions and turnover frequencies (TOFs) at least one order of magnitude higher than state-of-the-art Au-nanorod-based plasmonic catalysts. This work paves the way towards next-generation nanoreactors for chemical transformations with solar energy.

15.
Angew Chem Int Ed Engl ; 59(9): 3416-3422, 2020 02 24.
Article in English | MEDLINE | ID: mdl-31880381

ABSTRACT

Rational engineering and assimilation of diverse chemo- and biocatalytic functionalities in a single nanostructure is highly desired for efficient multistep chemical reactions but has so far remained elusive. Here, we design and synthesize multimodal catalytic nanoreactors (MCNRs) based on a mesoporous metal-organic framework (MOF). The MCNRs consist of customizable metal nanocrystals and stably anchored enzymes in the mesopores, as well as coordinatively unsaturated cationic metal MOF nodes, all within a single nanoreactor space. The highly intimate and diverse catalytic mesoporous microenvironments and facile accessibility to the active site in the MCNR enables the cooperative and synergistic participation from different chemo- and biocatalytic components. This was shown by one-pot multistep cascade reactions involving a heterogeneous catalytic nitroaldol reaction followed by a [Pd/lipase]-catalyzed chemoenzymatic dynamic kinetic resolution to yield optically pure (>99 % ee) nitroalcohol derivatives in quantitative yields.

16.
Biomaterials ; 230: 119600, 2020 02.
Article in English | MEDLINE | ID: mdl-31727420

ABSTRACT

Gd3+-based contrast agents monopolize in the clinical MR imaging-based diagnosis of hepatic tumors, however, the inherent toxicity by the released Gd3+-ions triggered an urgent demand for safer alternatives. Here, we demonstrate hollow manganese silicate nanoparticles (HMS), which exert burst-release of Mn2+-ions by switching to physiological acidic condition, exhibiting high effectiveness in hepatic tumor characterization as liver-specific MR contrast agent through the in-depth in vivo MR imaging study and immunohistochemical investigations with three hepatic tumor models (e.g., hepatocellular carcinoma, neuroendocrine carcinoma, adenocarcinoma). Their characteristic time-sequential enhancement patterns in HMS-enhanced MR imaging with improved conspicuity reflect their biological features such as vascularity, cellularity, mitochondrial activity and hepatocellular specificity, and thus allow the disease-specific characterization of various hepatic tumors. HMS-enhanced MR imaging with necrotic hepatocellular carcinoma model suggested the good correlation of the extent of tumor necrosis with residual mitochondrial activity. Such multi-responsive spatio-biological distribution and function of HMS resulting in time-dependent bioimaging coupled with low systemic toxicity sets the clinical potential to accurate diagnosis and therapeutic response in various hepatic tumors.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Magnetic Resonance Imaging , Nanoparticles , Carcinoma, Hepatocellular/diagnostic imaging , Contrast Media , Humans , Ions , Liver , Liver Neoplasms/diagnostic imaging , Manganese , Silicates
17.
Small ; 15(25): e1901280, 2019 06.
Article in English | MEDLINE | ID: mdl-31074190

ABSTRACT

Multifunctionalized porous catalytic nanoarchitectures are highly desirable for a variety of chemical transformations; however, selective installation of different catalysts with spatial and functional precision working synergistically and predictably, is highly challenging. Here, a synthetic strategy is developed toward the customizable combination of orthogonally reactive metal nanocrystals within interconnected carbon-cavities as a compartmentalized framework by employing aminated-silica-directed thermal solid-state nanoconfined synthesis of metal nanocrystals and endotemplating concomitant carbonization-mediated interlocking, as key processes. The main advantage of the strategy is the facility to choose any combination of metals, which can be further employed according to the desired application. The strategically synthesized compartmentalized multifunctional catalytic architectures of Pd-Pt@Com-CF regulate the O2 -mediated selective cascade oxidation reaction converting alcohol to acid with high yield and selectivity; and another Pt-Ir@Com-CF platform is demonstrated as a bifunctional electrocatalyst for oxygen reduction/evolution reactions.

18.
J Am Chem Soc ; 140(45): 15176-15180, 2018 11 14.
Article in English | MEDLINE | ID: mdl-30365303

ABSTRACT

Here, a highly selective solid-state nanocrystal conversion strategy is developed toward concave iron oxide (Fe3O4) nanocube with an open-mouthed cavity engraved exclusively on a single face. The strategy is based on a novel heat-induced nanospace-confined domino-type migration of Fe2+ ions from the SiO2-Fe3O4 interface toward the surrounding silica shell and concomitant self-limiting nanoscale phase-transition to the Fe-silicate form. Equipped with the chemically unique cavity, the produced Janus-type concave iron oxide nanocube was further functionalized with controllable density of catalytic Pt-nanocrystals exclusively on concave sites and utilized as a highly diffusive catalytic Janus nanoswimmer for the efficient degradation of pollutant-dyes in water.

19.
Acc Chem Res ; 51(11): 2867-2879, 2018 Nov 20.
Article in English | MEDLINE | ID: mdl-30346727

ABSTRACT

The extensive research performed in the past two decades has enabled the production of a range of colloidal nanocrystals, mostly through solution-based procedures that generate and transform nanostructures in bulk-phase solutions containing precursors and surfactants. However, the understanding and control of each nanocrystal (trans)formation step during the synthesis are still complicated because of the high complexity of this process, in which multiple diverse events such as nucleation, subsequent growth, attachment, and ripening occur simultaneously in bulk suspensions. Unlike well-established solution-based methods, solid-state reactions, which had been at the forefront of traditional inorganic materials chemistry, are quite rarely utilized in the realm of nanomaterials because of the high temperatures required for most solid-state reactions, as a result of which the clusters and NCs are prone to migrate through the bulk reaction medium and sinter together uncontrollably into large particles. We have been pursuing the "nanospace-confined approach" to explore the use of a variety of solid and hollow silica nanoparticles as either solid-state or solution-phase reaction media to carry out the syntheses and transformations of nanocrystals in a unique microenvironment, partitioning the reactants, intermediates, and transition states from the rest of the bulk reaction medium. Such nanoconfined systems have the potential not only to enable efficient and selective nanocrystal conversion chemistries but also to provide fundamental understanding pertaining to the synthetic evolution of nanostructures and transient mechanistic steps. The unique spaces with sizes of a few tens of nanometers inside nanoconfined systems offer the opportunity to observe and elucidate novel deconvoluted chemical phenomena that are impossible to investigate in bulk systems, and comprehensive understanding of nanoconfined chemistry can be implicated in explaining and controlling the macroscopic chemical behaviors. This Account describes our focused research on developing spatially confined platforms for nanocrystal syntheses and transformations, highlighting our diversity-oriented strategy, namely, the "postdecoration approach", which results in the evolution of new nanocatalytic sites in a preformed cavity for diversifying and controlling their morphologies, number, density and combinations. We discuss key examples of the "nanoconfined solid-state conversion approach" that involve novel reactions of nanocrystals within thermally stable solid silica nanospheres to synthesize and transform complex hybrid nanocrystals with increased complexity and functionality. In addition, an enlightening discussion of the examples of nanocrystal syntheses and conversions in nanoconfined solutions inside enclosed and exposed cavities of silica nanospheres is included. Finally, the important applications of nanospace-confined systems in various fields are also briefly discussed.

20.
ACS Appl Mater Interfaces ; 5(10): 4063-75, 2013 May 22.
Article in English | MEDLINE | ID: mdl-23597151

ABSTRACT

Hybrid nanomaterials offer potential scope for an increasing number of novel applications when engineered to deliver usefully functional properties. Recent advancements in the design of new material products that result from interactions among different compositions at the nanoscale and microscale has led to innovative ways to fabricate and process hybrids with altered structural physicochemical properties. An example is the development of novel "lubricants" that make use of ionic liquids (ILs) and their ability to induce exploitable molecular assemblies at the IL-graphene interface. In the present study, we report the potential of graphene-IL hybrid nanomaterials for engineering applications with a focus on "lubricant" properties to reduce frictional forces to enhance tribological performance. The present contribution outlines the wear and tribological properties (friction and lubrication) of a highly viscous IL [BMIM][I] and its comparison with its nanohybrid material counterpart. Detailed structural-microstructural investigations of the nanohybrid materials were performed using X-ray diffraction and microscopic techniques employing scanning electron (SEM), transmission electron (TEM), and high resolution transmission electron (HRTEM) microscopies. A comparative study of the morphology of friction track and wear behavior was assessed by SEM and TEM. These characteristic properties within and outside the friction track were further correlated with physical and chemical interactions obtained by contact angle measurements and Raman spectroscopy and energy dispersive analysis by X-ray (EDAX).

SELECTION OF CITATIONS
SEARCH DETAIL
...