Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Protein J ; 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38492187

ABSTRACT

Universal stress proteins (USPs) are widely distributed and play crucial roles in cellular responses to biotic and abiotic stresses. These roles include regulating cell growth and development, cell motility, hypoxia responses, and ion sequestration. With the increasing frequency and intensity of extreme weather events due to climate change, pathogens have developed different strategies to withstand environmental stresses, in which USPs play a significant role in their survival and virulence. In this study, we analyzed the importance of USPs in various organisms, such as archaea, plants, and fungi, as a parameter that influences their survival. We discussed the different types Of USPs and their role, aiming to carry out fundamental research in this field to identify significant constraints for better understanding of USP functions at molecular level. Additionally, we discussed concepts and research techniques that could help overcome these hurdles and facilitate new molecular approaches to better understand and target USPs as important stress adaptation and survival regulators. Although the precise characteristics of USPs are still unclear, numerous innovative uses have already been developed, tested, and implemented. Complementary approaches to basic research and applications, as well as new technology and analytical techniques, may offer insights into the cryptic but crucial activities of USPs in various living systems.

2.
Biochem Genet ; 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38427123

ABSTRACT

Salmonella Typhimurium (ST) is a zoonotic pathogen that can cause gastroenteritis in humans when they consume contaminated food or water. When exposed to various stressors, both from living organisms (biotic) and the environment (abiotic), Salmonella Typhimurium produces Universal Stress Proteins (USPs). These proteins are gaining recognition for their crucial role in bacterial stress resistance and the ability to enter a prolonged state of growth arrest. Additionally, USPs exhibit diverse structures due to the fusion of the USP domain with different catalytic motifs, enabling them to participate in various reactions and cellular activities during stressful conditions. In this particular study, researchers cloned and analyzed the uspA gene obtained from poultry-derived strains of Salmonella Typhimurium. The gene comprises 435 base pairs, encoding a USP family protein consisting of 144 amino acids. Phylogenetic analysis demonstrated a close relationship between the uspA genes of Salmonella Typhimurium and those found in other bacterial species. We used molecular dynamics simulations and 3D structure prediction to ensure that the USPA protein was stable. Furthermore, we also carried out motif search and network analysis of protein-protein interactions. The findings from this study offer valuable insights for the development of inhibitors targeted against Salmonella Typhimurium.

3.
Int J Environ Health Res ; : 1-14, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38415762

ABSTRACT

The presence of highly toxic dioxins, specifically polychlorinated dibenzo-p-dioxins (PCDDs), in drinking water is a matter of great concern due to their long-lasting nature and harmful effects. In this study, we detected three out of the five dioxin congeners: 2, 3, 7, 8-tetrachlorodibenzodioxin (TCDD), 1, 2, 3, 7, 8-pentachlorodibenzo-p-dioxin (PeCDD), and octachlorodibenzo-p-dioxin (OCDD). The investigation revealed that three dioxins were present in water samples of winter season, while TCDD and OCDD were found in the summer season. The geometric mean concentrations of PCDDs were 229.9 ng/L (winter) and 108.4 ng/L (summer), exceeded the maximum contaminant level of 30 pg/L set by the USEPA in surface water. The estimated daily intake of PCDDs for residents through drinking water was 273.97 ng-WHO2005-TEQ/kg/days during winter and 78.875 ng-WHO2005-TEQ/kg/days during summer. Our study emphasizes the urgent need for further research on persistent organic pollutants in drinking water to safeguard public health and community well-being.

4.
Dalton Trans ; 53(3): 1163-1177, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38105760

ABSTRACT

Mixed ligand copper(II) complexes [Cu(L1)(bpy)](ClO4)21 and [Cu(L2)(bpy)](ClO4)22 (where L1 = 1-(anthracen-9-yl)-N,N-bis(pyridin-2-ylmethyl)methanamine, L2 = 1-(pyren-1-yl)-N,N-bis(pyridin-2-ylmethyl)methanamine and bpy = 2,2'-bipyridine) were synthesised and characterised thoroughly via different analytical and spectroscopic techniques i.e., UV-vis spectroscopy, fluorescence spectroscopy, FT-IR spectroscopy, HRMS and EPR spectroscopy. The molecular structures of the synthesised complexes were obtained using the single-crystal X-ray diffraction technique. Both complexes exhibited penta-coordinated and acquired distorted square pyramidal geometry. The redox behaviour of complexes 1 and 2 was investigated by employing cyclic voltammetry. The DNA binding study was carried out by UV-vis spectrophotometry using double-stranded salmon sperm DNA (ds-ss-DNA). The binding constant (Kb) values of 1 and 2 were 0.11 × 104 M-1 and 1.05 × 104 M-1, respectively, which indicates that 2 has better binding ability than 1. This might be due to the higher conjugative abilities with the extended surface area of the aromatic pyrene ring compared to the anthracene moiety. The fluorescence quenching experiments were also performed with EB bound DNA (EB-DNA) and Stern-Volmer constant (KSV) values were calculated as 1.23 × 105 M-1 and 1.39 × 105 M-1 for 1 and 2, respectively, suggesting that 2 showed stronger interaction with ss-DNA than 1. The molecular docking data support the DNA-binding studies, with the sites and mode of interactions against B-DNA varying with 1 and 2. Evaluation of the DNA binding properties of the complexes to linearized plasmid DNA indicated that 2 had modest DNA binding properties, which is a pre-requisite for a genotoxic agent. The effect of 1 and 2 on cell survival was analysed using HeLa cells by MTT assay and it was observed that the IC50 values of 1 and 2 were 43.7 µM and 18.6 µM, respectively. Our study paves the way for the designing of bio-inspired novel mixed metal complexes, which shows promising results for further exploration of molecular and mechanistic studies towards the development of non-platinum based economical metallodrugs.


Subject(s)
Coordination Complexes , Copper , Male , Humans , Copper/chemistry , Molecular Docking Simulation , Spectroscopy, Fourier Transform Infrared , HeLa Cells , Semen/metabolism , DNA/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Crystallography, X-Ray , Ligands
5.
Front Microbiol ; 14: 1260812, 2023.
Article in English | MEDLINE | ID: mdl-37779723

ABSTRACT

Introduction: Dengue fever is hyperendemic in several Southeast and South Asian countries, including India, with all four serotypes (DENV 1-4) circulating at different periods and in different locations. Sustainable and improved virological and entomological surveillance is the only tool to prevent dengue and other vector-borne diseases. Objectives: The present study has been carried out to detect and characterize the circulating dengue virus (DENV) in field-collected Aedes mosquitoes in Bhopal, Central India. Methods: Aedes mosquitoes were collected from 29 localities within Bhopal city during October 2020 to September 2022. DENV infection was assessed in the individual head and thorax regions of Aedes mosquitoes using reverse transcriptase PCR. Positive samples were sequenced, and the circulating serotypes and genotypes were determined using phylogenetic analysis. Results: DENV RNA was detected in 7 Aedes aegypti and 1 Aedes albopictus, with infection rates of 0.59 and 0.14%, respectively. Phylogenetic analysis revealed all the isolates belonged to DENV serotype 2 and distinctly clustered with the non-Indian lineage (cosmopolitan genotype 4a), which was not recorded from the study area earlier. The time to most common recent ancestor (TMRCA) of these sequences was 7.4 years old, with the highest posterior density (HPD) of 3.5-12.2 years, indicating that this new lineage emerged during the year 2014. This is the first report on the DENV incrimination in both Ae. aegypti and Ae. albopictus mosquitoes collected from Bhopal, Central India. Conclusion: The observed emergence of the non-Indian lineage of DENV-2 in Bhopal, which again is a first report from the area, coincides with the gradual increase in DENV cases in Bhopal since 2014. This study emphasizes the importance of DENV surveillance and risk assessment in this strategically important part of the country to decipher its outbreak and severe disease-causing potential.

6.
Microb Pathog ; 181: 106182, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37263448

ABSTRACT

Efflux proteins are transporter molecules that actively pump out a variety of substrates, including antibiotics, from cells to the environment. They are found in both Gram-positive and Gram-negative bacteria and eukaryotic cells. Based on their protein sequence homology, energy source, and overall structure, efflux proteins can be divided into seven groups. Multidrug efflux pumps are transmembrane proteins produced by microbes to enhance their survival in harsh environments and contribute to antibiotic resistance. These pumps are present in all bacterial genomes studied, indicating their ancestral origins. Many bacterial genes encoding efflux pumps are involved in transport, a significant contributor to antibiotic resistance in microbes. Efflux pumps are widely implicated in the extrusion of clinically relevant antibiotics from cells to the extracellular environment and, as such, represent a significant challenge to antimicrobial therapy. This review aims to provide an overview of the structures and mechanisms of action, substrate profiles, regulation, and possible inhibition of clinically relevant efflux pumps. Additionally, recent advances in research and the pharmacological exploitation of efflux pump inhibitors as a promising intervention for combating drug resistance will be discussed.


Subject(s)
Bacterial Proteins , Gram-Negative Bacteria , Bacterial Proteins/metabolism , Gram-Negative Bacteria/genetics , Gram-Negative Bacteria/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Drug Resistance, Multiple, Bacterial/genetics , Gram-Positive Bacteria/genetics , Gram-Positive Bacteria/metabolism
7.
World J Microbiol Biotechnol ; 39(6): 162, 2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37067651

ABSTRACT

Salmonella enterica serovar Typhimurium is becoming a leading cause of gastroenteritis and mortality. The use of antibiotics has increased natural resistance of S. Typhimurium to antibiotics. This study aims to isolate and characterize multi-drug-resistant (MDR) Salmonella strains from hospital sewage samples in Bhopal City, central India. The MDR isolates were characterized by molecular identification, antimicrobial resistance patterns, multi-locus sequence typing, and efflux pump activity. Specific genes (hilA, stn, invA, typh, and iroB) were used to confirm S. Typhimurium isolates. The Kirbey-Bauer method was employed to profile antimicrobial resistance using 20 antibiotics. Multi-locus sequence typing confirmed S. Typhimurium using seven housekeeping genes (aroC, dnaN, hemD, hisD, purE, sucA, and thr). Out of five strains, only four were confirmed as S. Typhimurium during MLST analysis. Efflux pump activity was determined using the ethidium bromide (EtBr) cartwheel test. Of the 160 isolates, 38 were presumptively confirmed as S. Typhimurium based on biochemical characterization, and only five MDR Salmonella strains were selected for their resistance against most antibiotics. Efflux pump activity revealed that five out of the four MDR isolates did not retain EtBr inside the cells, indicating pronounced efflux activity. Additionally, the isolated strains showed a specific correlation between the antimicrobial phenotypes and genotypes. The results of this study provide a better understanding of the characterization of S. Typhimurium serotype in Bhopal City. Future studies should focus on understanding changing antimicrobial resistance patterns, pathogenicity, and the genetic background of Salmonella serotypes. Further surveillance activities for antimicrobial-resistant Salmonella in different environmental sources should be prioritized.


Subject(s)
Salmonella Infections , Salmonella typhimurium , Humans , Salmonella typhimurium/genetics , Multilocus Sequence Typing , Sewage , Anti-Bacterial Agents/pharmacology , Salmonella Infections/epidemiology , Microbial Sensitivity Tests , Drug Resistance, Multiple, Bacterial/genetics
8.
Cancers (Basel) ; 15(6)2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36980799

ABSTRACT

The complexity and variety of gut microbiomes within and among individuals have been extensively studied in recent years in connection to human health and diseases. Our growing understanding of the bidirectional communication between metabolic diseases and the gut microbiome has also highlighted the significance of gut microbiome dysbiosis in the genesis and development of obesity-related cancers. Therefore, it is crucial to comprehend the possible role of the gut microbiota in the crosstalk between obesity and colorectal cancer (CRC). Through the induction of gut microbial dysbiosis, gut epithelial barrier impairment, metabolomic dysregulation, chronic inflammation, or dysregulation in energy harvesting, obesity may promote the development of colorectal tumors. It is well known that strategies for cancer prevention and treatment are most effective when combined with a healthy diet, physical activity, and active lifestyle choices. Recent studies also suggest that an improved understanding of the complex linkages between the gut microbiome and various cancers as well as metabolic diseases can potentially improve cancer treatments and overall outcomes. In this context, we herein review and summarize the clinical and experimental evidence supporting the functional role of the gut microbiome in the pathogenesis and progression of CRC concerning obesity and its metabolic correlates, which may pave the way for the development of novel prognostic tools for CRC prevention. Therapeutic approaches for restoring the microbiome homeostasis in conjunction with cancer treatments are also discussed herein.

9.
Cells ; 13(1)2023 12 24.
Article in English | MEDLINE | ID: mdl-38201245

ABSTRACT

The selection of an appropriate scaffold is imperative for the successful development of alternative animal protein in the form of cultured meat or lab-grown meat. Decellularized tissues have been suggested as a potential scaffold for cultured meat production owing to their capacity to support an optimal environment and niche conducive to cell proliferation and growth. This approach facilitates the systematic development of 3D tissues in the laboratory. Decellularized scaffold biomaterials have characteristics of high biocompatibility, biodegradation, and various bioactivities, which could potentially address the limitations associated with synthetic bio-scaffold materials. The present study involved the derivation and characterization of a decellularized scaffold from mushroom tissue following subsequent assessment of the scaffold's capacity to support myogenic differentiation. Mushroom sections were soaked in nuclease and detergent solution for 4 days. Furthermore, decellularization was confirmed by histology and DAPI staining, which showed the removal of cellular components and nuclei. Myoblast cells were seeded onto decellularized tissue, which exhibited excellent cytocompatibility and promoted myogenic growth and differentiation. The study's findings can serve as a foreground for the generation of an edible and natural scaffold for producing a safe and disease-free source of alternative animal protein, potentially reducing the burden on the health sector caused by conventional animal protein production and consumption.


Subject(s)
Biocompatible Materials , Tissue Scaffolds , Animals , Cell Differentiation , Biocompatible Materials/pharmacology , Cell Proliferation , Myoblasts
10.
J Diabetes Metab Disord ; 21(2): 1873-1882, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36404833

ABSTRACT

Objective: The aim of this review is to speculate the pre-clinical and clinical evidences indicating the association between butyrate-synthesizing firmicutes and development and progression of type 2 diabetes mellitus. Methodology: Literature was searched using 'Google Scholar' and 'PubMed' to find out most relevant articles for the scope of this review. Information was also gathered from authentic sources such as the World Health Organisation and the International Diabetes Federation. Results: Evidences suggest that an abnormal perturbation in the gut microbiome characterized by subsided levels of butyrate-producing bacteria may gradually result in the progression of type-2 diabetes; however, the explicit mechanisms underlying and implicating the role of specific butyrate-producing microbes remain unclear. Conclusions: This review explicitly summarizes the role of butyrate-synthesizing firmicutes known to be reduced in the subjects with type-2 diabetes mellitus in host metabolic health and contemplates the putative and reported mechanisms underlying its implication in the pathophysiology of type-2 diabetes mellitus.

11.
PLoS Negl Trop Dis ; 16(10): e0010859, 2022 10.
Article in English | MEDLINE | ID: mdl-36251691

ABSTRACT

In recent decades, dengue has been expanding rapidly in the tropical cities. Even though environmental factors and landscape features profoundly impact dengue vector abundance and disease epidemiology, significant gaps exist in understanding the role of local environmental heterogeneity on dengue epidemiology in India. In this study, we assessed the role of remotely sensed climatic factors (rainfall, temperature and humidity) and landscape variables (land use pattern, vegetation and built up density) on dengue incidence (2012-2019) in Bhopal city, Central India. Dengue hotspots in the city were assessed through geographical information system based spatial statistics. Dengue incidence increased from 0.59 cases in 2012 to 9.11 cases in 2019 per 10,000 inhabitants, and wards located in Southern Bhopal were found to be dengue hotspots. Distributed lag non-linear model combined with quasi Poisson regression was used to assess the exposure-response association, relative risk (RR), and delayed effects of environmental factors on dengue incidence. The analysis revealed a non-linear relationship between meteorological variables and dengue cases. The model shows that the risk of dengue cases increases with increasing mean temperature, rainfall and absolute humidity. The highest RR of dengue cases (~2.0) was observed for absolute humidity ≥60 g/m3 with a 5-15 week lag. Rapid urbanization assessed by an increase in the built-up area (a 9.1% increase in 2020 compared to 2014) could also be a key factor driving dengue incidence in Bhopal city. The study sheds important insight into the synergistic effects of both the landscape and climatic factors on the transmission dynamics of dengue. Furthermore, the study provides key baseline information on the climatic variables that can be used in the micro-level dengue prediction models in Bhopal and other cities with similar climatic conditions.


Subject(s)
Dengue , Humans , Humidity , India/epidemiology , Temperature , Incidence
12.
Future Microbiol ; 17: 1171-1198, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35924958

ABSTRACT

Mycobacterium tuberculosis (Mtb) can become a long-term infection by evading the host immune response. Coevolution of Mtb with humans has resulted in its ability to hijack the host's immune systems in a variety of ways. So far, every Mtb defense strategy is essentially dependent on a subtle balance that, if shifted, can promote Mtb proliferation in the host, resulting in disease progression. In this review, the authors summarize many important and previously unknown mechanisms by which Mtb evades the host immune response. Besides recently found strategies by which Mtb manipulates the host molecular regulatory machinery of innate and adaptive immunity, including the intranuclear regulatory machinery, costimulatory molecules, the ubiquitin system and cellular intrinsic immune components will be discussed. A holistic understanding of these immune-evasion mechanisms is of foremost importance for the prevention, diagnosis and treatment of tuberculosis and will lead to new insights into tuberculosis pathogenesis and the development of more effective vaccines and treatment regimens.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Adaptive Immunity , Humans , Immune System , Immunity, Innate , Mycobacterium tuberculosis/physiology , Tuberculosis/microbiology
13.
Biomedicines ; 10(7)2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35884849

ABSTRACT

From infancy through to old age, the microbiome plays an important role in modulating the host-immune system. As we age, our immune system and our gut microbiota change significantly in composition and function, which is linked to an increased vulnerability to infectious diseases and a decrease in vaccine responses. Our microbiome remains largely stable throughout adulthood; however, aging causes a major shift in the composition and function of the gut microbiome, as well as a decrease in diversity. Considering the critical role of the gut microbiome in the host-immune system, it is important to address, prevent, and ameliorate age-related dysbiosis, which could be an effective strategy for preventing/restoring functional deficits in immune responses as we grow older. Several factors, such as the host's genetics and nutritional state, along with the gut microbiome, can influence vaccine efficacy or reaction. Emerging evidence suggests that the microbiome could be a significant determinant of vaccine immunity. Physiological mechanisms such as senescence, or the steady loss of cellular functions, which affect the aging process and vaccination responses, have yet to be comprehended. Recent studies on several COVID-19 vaccines worldwide have provided a considerable amount of data to support the hypothesis that aging plays a crucial role in modulating COVID-19 vaccination efficacy across different populations.

14.
Microorganisms ; 10(7)2022 Jul 19.
Article in English | MEDLINE | ID: mdl-35889175

ABSTRACT

Over the last few years, the microbiome has emerged as a high-priority research area to discover missing links between brain health and gut dysbiosis. Emerging evidence suggests that the commensal gut microbiome is an important regulator of the gut-brain axis and plays a critical role in brain physiology. Engaging microbiome-generated metabolites such as short-chain fatty acids, the immune system, the enteric nervous system, the endocrine system (including the HPA axis), tryptophan metabolism or the vagus nerve plays a crucial role in communication between the gut microbes and the brain. Humans are exposed to a wide range of pollutants in everyday life that impact our intestinal microbiota and manipulate the bidirectional communication between the gut and the brain, resulting in predisposition to psychiatric or neurological disorders. However, the interaction between xenobiotics, microbiota and neurotoxicity has yet to be completely investigated. Although research into the precise processes of the microbiota-gut-brain axis is growing rapidly, comprehending the implications of environmental contaminants remains challenging. In these milieus, we herein discuss how various environmental pollutants such as phthalates, heavy metals, Bisphenol A and particulate matter may alter the intricate microbiota-gut-brain axis thereby impacting our neurological and overall mental health.

15.
Sci Rep ; 12(1): 9252, 2022 06 03.
Article in English | MEDLINE | ID: mdl-35662272

ABSTRACT

Contamination of drinking water with endocrine-disrupting chemicals (EDCs) raises concerns over the security and long-term sustainability of clean water supplies as well as human exposure via daily water intake. In this study, the seasonal disparity and occurrence of six phthalates and bisphenol-A in the drinking water supply system and associated health-risk were examined. The detection frequencies of the ∑6PAEs ranged from 24 to 100% in the winter whereas; in summer it is below the detection limit up to 100%. DEHP was the most prevalent phthalate congener ranging from 1.14 to 8351.85 µg/L (winter) and 0.552 to 410.29 µg/L (summer) surpassing the permissible limit. However, BPA concentrations were found under the permissible limit. The results suggested that PAEs concentration displayed significant seasonal variations with the highest in winter and the lowest in summer. The exposure to PAEs and BPA from drinking water was assessed, indicating a possible health risk to humans with a hazard quotient (HQ) > 1 for DEHP only. The findings necessitate an immediate scrutiny of these EDCs in drinking water supply system and are critical for implementing effective technologies at the WTP scale to ensure the quality and safety of drinking water to ascertain human and environmental health.


Subject(s)
Diethylhexyl Phthalate , Drinking Water , Endocrine Disruptors , Phthalic Acids , Water Pollutants, Chemical , Endocrine Disruptors/analysis , Environmental Monitoring/methods , Humans , Phthalic Acids/analysis , Seasons , Water Pollutants, Chemical/analysis , Water Supply
16.
Nutrients ; 14(9)2022 Apr 21.
Article in English | MEDLINE | ID: mdl-35565691

ABSTRACT

Type-2 diabetes mellitus (T2DM) is often linked with hyperglycemia, disturbed lipid profiles, inflammation, and gut dysbiosis. Omega-3 fatty acid supplementation has a vital role in the management of T2DM. As a result, a better understanding of the potential role of omega-3 fatty acids in the development and progression of T2DM by influencing the intestinal microflora will help to improve the therapeutic intervention for T2DM and related complications. Focusing on the molecular mechanisms and signaling pathways induced by omega-3 fatty acids, this paper attempts to comprehensively review and discuss the putative associations between omega-3 fatty acids, gut dysbiosis, and the pathophysiology of T2DM and its related comorbidities. In addition, we contemplate the importance of gut microbiota in T2DM prevention and treatment and ponder the role of omega-3 fatty acids in T2DM by positively modulating gut microbiota, which may lead to discovery of novel targets and therapeutic strategies thereby paving way for further comprehensive, mechanistic, and clinical studies.


Subject(s)
Diabetes Mellitus, Type 2 , Fatty Acids, Omega-3 , Gastrointestinal Microbiome , Hyperglycemia , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/prevention & control , Dysbiosis/prevention & control , Fatty Acids, Omega-3/pharmacology , Fatty Acids, Omega-3/therapeutic use , Gastrointestinal Microbiome/physiology , Humans , Hyperglycemia/drug therapy
17.
Nanomaterials (Basel) ; 12(10)2022 May 11.
Article in English | MEDLINE | ID: mdl-35630854

ABSTRACT

Environmental exposure to microplastics (MPs) and nanoplastics (NPs) is an increasing concern from human health perspectives. Little information on the genotoxic and cytotoxic potential of NP particles in human cells is available. We aimed to assess the cytotoxic and genotoxic potential of polystyrene nanoplastics (PSNPs) at different concentrations (2000µg/mL, 1000µg/mL, and 500µg/mL) by using chromosomal aberration (CA) and cytokinesis-block micronucleus assays (CBMN) on human peripheral lymphocytes. Dose-dependent hemolytic activity and cell viability were observed against the PSNPs exposure. Increased chromosomal aberrations, such as chromosomal breaks and dicentric chromosomes, and an increase in nucleoplasmic bridge (NBP) formation and nuclear budding (NBUD) were observed. The frequency of mitotic index (MI) decreased significantly in the PSNP-exposed groups from lower to higher concentrations. A significant increase in micronuclei (MN) formation and cytostasis% and a dose-dependent reduction in nuclear division index (NDI) in PSNP-exposed groups indicated oxidative stress-mediated cytotoxicity, DNA damage, and genomic instabilities due to PSNP exposure in human lymphocyte cells. This study highlights the importance of understanding the toxic mechanisms and associated chronic and acute health effects on humans due to exposure to this pervasive environmental pollutant.

18.
Microorganisms ; 10(2)2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35208787

ABSTRACT

Blood feeding is an important behavior of Aedes aegypti, a dominant arboviral disease vector, as it can establish and transmit viruses to humans. Bacteria associated with the mosquito gut can modulate the biological characteristics and behavior of disease vectors. In this study, we characterized the gut microbiota composition of human-blood-fed (HF), non-human-blood-fed (NHF) and non-fed (NF) field-collected Ae. aegypti mosquitoes, using a 16S metagenomic approach, to assess any association of bacterial taxa with the blood-feeding behavior of Ae. aegypti. A significant difference in the microbiota composition between the HF and NF mosquito group was observed. A significant association was observed in the relative abundance of families Rhodobacteraceae, Neisseriaceae and Dermacoccaceae in the HF group in contrast to NF and NHF Ae. aegypti mosquitoes, respectively. At the class level, two classes (Rhodobacterales and Neisseriales) were found to be in higher abundance in the HF mosquitoes compared to a single class of bacteria (Caulobacterales) in the NF mosquitoes. These results show that human-blood feeding may change the gut microbiota in wild Ae. aegypti populations. More research is needed to determine how changes in the midgut bacterial communities in response to human-blood-feeding affect the vectorial capacity of Ae. aegypti.

19.
Int Arch Occup Environ Health ; 95(5): 897-908, 2022 07.
Article in English | MEDLINE | ID: mdl-34716808

ABSTRACT

Air pollution results from a variable and complex mixture of harmful gases and suspended particles and is the most worrisome of all environmental hazards. It is implicated in several non -communicable diseases and is recognized to be a public health problem. Though the initial exposure to air pollution is through the respiratory system, kidneys are thought to be exposed to higher concentrations owing to their filtration function. Chronic kidney disease is the insidious end result of several disease processes which cumulatively form a large healthcare burden, particularly in low- and middle-income countries. There is a growing body of evidence that air pollution may be a contributing factor that leads to CKD by not only its direct effects, but can also compound the effect of other factors/diseases causing kidney injury. PM2.5 exposure particularly has been implicated, although there is some evidence regarding other air pollutants as well. These pollutants are thought to act on kidneys through several interlinked systemic pathways and mechanisms which individually and collectively damage the nephrons. Long-term exposures seem to gradually diminish renal function and lead to end-stage renal disease. A thorough understanding of the mechanism of kidney injury is the key for formulating and implementing effective strategies for reducing this burden. Maintaining the air quality, promoting education, improving health quality and promotion of targeted nephroprotective measures through effective policy and research support are required in addressing this global public health problem.


Subject(s)
Air Pollutants , Air Pollution , Renal Insufficiency, Chronic , Air Pollutants/adverse effects , Air Pollutants/analysis , Air Pollution/adverse effects , Air Pollution/analysis , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Humans , Particulate Matter/adverse effects , Particulate Matter/analysis , Renal Insufficiency, Chronic/epidemiology , Renal Insufficiency, Chronic/etiology
20.
Curr Res Microb Sci ; 2: 100057, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34396355

ABSTRACT

Mucormycosis is a serious and potentially fatal fungal infection caused by a type of rare but opportunistic fungal pathogen called mucormycetes. Recently, mucormycosis, also known as black fungus, made severe chaos in India during the second wave (between April and June 2021) of the tragical COVID-19 epidemic by its sudden and devastating surge with up to 50% mortality rate. While the exact cause of its sharp rise suddenly and specifically during the second wave still remains debatable, it has been noted that the people who are diabetic and have recovered from COVID-19 infection are more predisposed to mucormycosis. Nevertheless, the precise reason and mechanism(s) underlying the surge of this deadly infection needs to be investigated to comprehend its pathogenesis and pathological elements and discover rationale preventative/ therapeutic solutions. It is speculated that the indiscriminate use of steroids, antibiotics and zinc as a self-medication practice that increased during the COVID-19 epidemic may have promoted the dysbiosis of gut microbiota thereby inducing immune-suppression and making the risk group highly susceptible to this mycotic disease. In these contexts, this timely article attempts to contemplate and discuss some of the possible factors and potential mechanisms that can help to understand and explain the conundrum of sudden, steep and deadly upsurge of mucormycosis infections during the second wave of COVID-19 epidemic.

SELECTION OF CITATIONS
SEARCH DETAIL
...