Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Dev Cell ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38834071

ABSTRACT

Normal cells coordinate proliferation and differentiation by precise tuning of gene expression based on the dynamic shifts of the epigenome throughout the developmental timeline. Although non-mutational epigenetic reprogramming is an emerging hallmark of cancer, the epigenomic shifts that occur during the transition from normal to malignant cells remain elusive. Here, we capture the epigenomic changes that occur during tumorigenesis in a prototypic embryonal brain tumor, medulloblastoma. By comparing the epigenomes of the different stages of transforming cells in mice, we identify nuclear factor I family of transcription factors, known to be cell fate determinants in development, as oncogenic regulators in the epigenomes of precancerous and cancerous cells. Furthermore, genetic and pharmacological inhibition of NFIB validated a crucial role of this transcription factor by disrupting the cancer epigenome in medulloblastoma. Thus, this study exemplifies how epigenomic changes contribute to tumorigenesis via non-mutational mechanisms involving developmental transcription factors.

2.
J Pathol ; 263(3): 275-287, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38734880

ABSTRACT

The hyperplasia-carcinoma sequence is a stepwise tumourigenic programme towards endometrial cancer in which normal endometrial epithelium becomes neoplastic through non-atypical endometrial hyperplasia (NAEH) and atypical endometrial hyperplasia (AEH), under the influence of unopposed oestrogen. NAEH and AEH are known to exhibit polyclonal and monoclonal cell growth, respectively; yet, aside from focal PTEN protein loss, the genetic and epigenetic alterations that occur during the cellular transition remain largely unknown. We sought to explore the potential molecular mechanisms that promote the NAEH-AEH transition and identify molecular markers that could help to differentiate between these two states. We conducted target-panel sequencing on the coding exons of 596 genes, including 96 endometrial cancer driver genes, and DNA methylome microarrays for 48 NAEH and 44 AEH lesions that were separately collected via macro- or micro-dissection from the endometrial tissues of 30 cases. Sequencing analyses revealed acquisition of the PTEN mutation and the clonal expansion of tumour cells in AEH samples. Further, across the transition, alterations to the DNA methylome were characterised by hypermethylation of promoter/enhancer regions and CpG islands, as well as hypo- and hyper-methylation of DNA-binding regions for transcription factors relevant to endometrial cell differentiation and/or tumourigenesis, including FOXA2, SOX17, and HAND2. The identified DNA methylation signature distinguishing NAEH and AEH lesions was reproducible in a validation cohort with modest discriminative capability. These findings not only support the concept that the transition from NAEH to AEH is an essential step within neoplastic cell transformation of endometrial epithelium but also provide deep insight into the molecular mechanism of the tumourigenic programme. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Carcinoma, Endometrioid , DNA Methylation , Endometrial Hyperplasia , Endometrial Neoplasms , Epigenesis, Genetic , PTEN Phosphohydrolase , Female , Humans , Endometrial Neoplasms/genetics , Endometrial Neoplasms/pathology , Carcinoma, Endometrioid/genetics , Carcinoma, Endometrioid/pathology , PTEN Phosphohydrolase/genetics , Endometrial Hyperplasia/genetics , Endometrial Hyperplasia/pathology , Endometrial Hyperplasia/metabolism , Precancerous Conditions/genetics , Precancerous Conditions/pathology , Mutation , Gene Expression Regulation, Neoplastic , Middle Aged , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , CpG Islands/genetics , Aged
3.
Cancer Gene Ther ; 31(5): 736-745, 2024 May.
Article in English | MEDLINE | ID: mdl-38429368

ABSTRACT

Breast cancer is a heterogeneous disease, and breast cancer cell lines are invaluable for studying this heterogeneity. However, the epigenetic diversity across these cell lines remains poorly understood. In this study, we performed genome-wide chromatin accessibility analysis on 23 breast cancer cell lines, including 2 estrogen receptor (ER)-positive/human epidermal growth factor receptor 2 (HER2)-negative (ER+/HER2-), 3 ER+/HER2+, 3 HER2+, and 15 triple-negative breast cancer (TNBC) lines. These cell lines were classified into three groups based on their chromatin accessibility: the receptor-positive group (Group-P), TNBC basal group (Group-B), and TNBC mesenchymal group (Group-M). Motif enrichment analysis revealed that only Group-P exhibited coenrichment of forkhead box A1 (FOXA1) and grainyhead-like 2 (GRHL2) motifs, whereas Group-B was characterized by the presence of the GRHL2 motif without FOXA1. Notably, Group-M did not show enrichment of either FOXA1 or GRHL2 motifs. Furthermore, gene ontology analysis suggested that group-specific accessible regions were associated with their unique lineage characteristics. To investigate the epigenetic landscape regulatory roles of FOXA1 and GRHL2, we performed knockdown experiments targeting FOXA1 and GRHL2, followed by assay for transposase-accessible chromatin sequencing analysis. The findings revealed that FOXA1 maintains Group-P-specific regions while suppressing Group-B-specific regions in Group-P cells. In contrast, GRHL2 preserves commonly accessible regions shared between Group-P and Group-B in Group-B cells, suggesting that FOXA1 and GRHL2 play a pivotal role in preserving distinct chromatin accessibility patterns for each group. Specifically, FOXA1 distinguishes between receptor-positive and TNBC cell lines, whereas GRHL2 distinguishes between basal-like and mesenchymal subtypes in TNBC lines.


Subject(s)
Breast Neoplasms , Chromatin , Epigenesis, Genetic , Hepatocyte Nuclear Factor 3-alpha , Transcription Factors , Humans , Hepatocyte Nuclear Factor 3-alpha/metabolism , Hepatocyte Nuclear Factor 3-alpha/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Female , Chromatin/metabolism , Chromatin/genetics , Cell Line, Tumor , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Gene Expression Regulation, Neoplastic , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism
4.
Int J Oncol ; 64(3)2024 Mar.
Article in English | MEDLINE | ID: mdl-38299254

ABSTRACT

Histone modification, a major epigenetic mechanism regulating gene expression through chromatin remodeling, introduces dynamic changes in chromatin architecture. Protein arginine methyltransferase 6 (PRMT6) is overexpressed in various types of cancer, including prostate, lung and endometrial cancer (EC). Epigenome regulates the expression of endogenous retrovirus (ERV), which activates interferon signaling related to cancer. The antitumor effects of PRMT6 inhibition and the role of PRMT6 in EC were investigated, using epigenome multi­omics analysis, including an assay for chromatin immunoprecipitation sequencing (ChIP­seq) and RNA sequencing (RNA­seq). The expression of PRMT6 in EC was analyzed using reverse transcription­quantitative polymerase chain reaction (RT­qPCR) and immunohistochemistry (IHC). The prognostic impact of PRMT6 expression was evaluated using IHC. The effects of PRMT6­knockdown (KD) were investigated using cell viability and apoptosis assays, as well as its effects on the epigenome, using ChIP­seq of H3K27ac antibodies and RNA­seq. Finally, the downstream targets identified by multi­omics analysis were evaluated. PRMT6 was overexpressed in EC and associated with a poor prognosis. PRMT6­KD induced histone hypomethylation, while suppressing cell growth and apoptosis. ChIP­seq revealed that PRMT6 regulated genomic regions related to interferons and apoptosis through histone modifications. The RNA­seq data demonstrated altered interferon­related pathways and increased expression of tumor suppressor genes, including NK6 homeobox 1 and phosphoinositide­3­kinase regulatory subunit 1, following PRMT6­KD. RT­qPCR revealed that eight ERV genes which activated interferon signaling were upregulated by PRMT6­KD. The data of the present study suggested that PRMT6 inhibition induced apoptosis through interferon signaling activated by ERV. PRMT6 regulated tumor suppressor genes and may be a novel therapeutic target, to the best of our knowledge, in EC.


Subject(s)
Endometrial Neoplasms , Histones , Male , Female , Humans , Histones/metabolism , Nuclear Proteins/genetics , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism , Histone Code , Endometrial Neoplasms/genetics , Apoptosis , Interferons
5.
Cell Death Dis ; 14(7): 424, 2023 07 13.
Article in English | MEDLINE | ID: mdl-37443145

ABSTRACT

Long noncoding RNAs (lncRNAs) play pivotal roles in tumor development. To identify dysregulated lncRNAs in gastric cancer (GC), we analyzed genome-wide trimethylation of histone H3 lysine 4 (H3K4me3) to screen for transcriptionally active lncRNA genes in the non-tumorous gastric mucosa of patients with GC and healthy individuals. We found that H3K4me3 at TM4SF1-AS1 was specifically upregulated in GC patients and that the expression of TM4SF1-AS1 was significantly elevated in primary and cultured GC cells. TM4SF1-AS1 contributes to GC cell growth in vitro and in vivo, and its oncogenic function is mediated, at least in part, through interactions with purine-rich element-binding protein α (Pur-α) and Y-box binding protein 1 (YB-1). TM4SF1-AS1 also activates interferon signaling in GC cells, which is dependent on Pur-α and RIG-I. Chromatin isolation by RNA purification (ChIRP)-mass spectrometry demonstrated that TM4SF1-AS1 was associated with several stress granule (SG)-related proteins, including G3BP2, RACK1, and DDX3. Notably, TM4SF1-AS1 promoted SG formation and inhibited apoptosis in GC cells by sequestering RACK1, an activator of the stress-responsive MAPK pathway, within SGs. TM4SF1-AS1-induced SG formation and apoptosis inhibition are dependent on Pur-α and YB-1. These findings suggested that TM4SF1-AS1 contributes to tumorigenesis by enhancing SG-mediated stress adaptation.


Subject(s)
MicroRNAs , RNA, Long Noncoding , Stomach Neoplasms , Humans , Cell Line, Tumor , RNA, Long Noncoding/genetics , Stress Granules , Apoptosis/genetics , Stomach Neoplasms/pathology , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , Antigens, Surface , Neoplasm Proteins/metabolism
6.
EMBO Rep ; 24(8): e56335, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37341560

ABSTRACT

While there is growing evidence that many epigenetically silenced genes in cancer are tumour suppressor candidates, their significance in cancer biology remains unclear. Here, we identify human Neuralized (NEURL), which acts as a novel tumour suppressor targeting oncogenic Wnt/ß-catenin signalling in human cancers. The expression of NEURL is epigenetically regulated and markedly suppressed in human colorectal cancer. We, therefore, considered NEURL to be a bona fide tumour suppressor in colorectal cancer and demonstrate that this tumour suppressive function depends on NEURL-mediated oncogenic ß-catenin degradation. We find that NEURL acts as an E3 ubiquitin ligase, interacting directly with oncogenic ß-catenin, and reducing its cytoplasmic levels in a GSK3ß- and ß-TrCP-independent manner, indicating that NEURL-ß-catenin interactions can lead to a disruption of the canonical Wnt/ß-catenin pathway. This study suggests that NEURL is a therapeutic target against human cancers and that it acts by regulating oncogenic Wnt/ß-catenin signalling.


Subject(s)
Colonic Neoplasms , beta Catenin , Humans , beta Catenin/genetics , beta Catenin/metabolism , Wnt Signaling Pathway , Colonic Neoplasms/genetics , Ubiquitin-Protein Ligases/metabolism , beta-Transducin Repeat-Containing Proteins/genetics , beta-Transducin Repeat-Containing Proteins/metabolism , Cell Line, Tumor
7.
Front Oncol ; 13: 1156111, 2023.
Article in English | MEDLINE | ID: mdl-37234983

ABSTRACT

Breast cancer biology varies markedly among patients. Basal-like breast cancer is one of the most challenging subtypes to treat because it lacks effective therapeutic targets. Despite numerous studies on potential targetable molecules in this subtype, few targets have shown promise. However, the present study revealed that FOXD1, a transcription factor that functions in both normal development and malignancy, is associated with poor prognosis in basal-like breast cancer. We analyzed publicly available RNA sequencing data and conducted FOXD1-knockdown experiments, finding that FOXD1 maintains gene expression programs that contribute to tumor progression. We first conducted survival analysis of patients grouped via a Gaussian mixture model based on gene expression in basal-like tumors, finding that FOXD1 is a prognostic factor specific to this subtype. Then, our RNA sequencing and chromatin immunoprecipitation sequencing experiments using the basal-like breast cancer cell lines BT549 and Hs578T with FOXD1 knockdown revealed that FOXD1 regulates enhancer-gene programs related to tumor progression. These findings suggest that FOXD1 plays an important role in basal-like breast cancer progression and may represent a promising therapeutic target.

8.
JCI Insight ; 8(10)2023 05 22.
Article in English | MEDLINE | ID: mdl-37212282

ABSTRACT

Mesenchymal chondrosarcoma affects adolescents and young adults, and most cases usually have the HEY1::NCOA2 fusion gene. However, the functional role of HEY1-NCOA2 in the development and progression of mesenchymal chondrosarcoma remains largely unknown. This study aimed to clarify the functional role of HEY1-NCOA2 in transformation of the cell of origin and induction of typical biphasic morphology of mesenchymal chondrosarcoma. We generated a mouse model for mesenchymal chondrosarcoma by introducing HEY1-NCOA2 into mouse embryonic superficial zone (eSZ) followed by subcutaneous transplantation into nude mice. HEY1-NCOA2 expression in eSZ cells successfully induced subcutaneous tumors in 68.9% of recipients, showing biphasic morphologies and expression of Sox9, a master regulator of chondrogenic differentiation. ChIP sequencing analyses indicated frequent interaction between HEY1-NCOA2 binding peaks and active enhancers. Runx2, which is important for differentiation and proliferation of the chondrocytic lineage, is invariably expressed in mouse mesenchymal chondrosarcoma, and interaction between HEY1-NCOA2 and Runx2 is observed using NCOA2 C-terminal domains. Although Runx2 knockout resulted in significant delay in tumor onset, it also induced aggressive growth of immature small round cells. Runx3, which is also expressed in mesenchymal chondrosarcoma and interacts with HEY1-NCOA2, replaced the DNA-binding property of Runx2 only in part. Treatment with the HDAC inhibitor panobinostat suppressed tumor growth both in vitro and in vivo, abrogating expression of genes downstream of HEY1-NCOA2 and Runx2. In conclusion, HEY1::NCOA2 expression modulates the transcriptional program in chondrogenic differentiation, affecting cartilage-specific transcription factor functions.


Subject(s)
Bone Neoplasms , Chondrosarcoma, Mesenchymal , Oncogene Proteins, Fusion , Animals , Mice , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Cell Differentiation , Chondrosarcoma, Mesenchymal/genetics , Chondrosarcoma, Mesenchymal/metabolism , Chondrosarcoma, Mesenchymal/pathology , Core Binding Factor Alpha 1 Subunit/genetics , Mice, Nude , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism
9.
Nat Commun ; 14(1): 1957, 2023 04 07.
Article in English | MEDLINE | ID: mdl-37029109

ABSTRACT

Alveolar soft part sarcoma (ASPS) is a soft part malignancy affecting adolescents and young adults. ASPS is characterized by a highly integrated vascular network, and its high metastatic potential indicates the importance of ASPS's prominent angiogenic activity. Here, we find that the expression of ASPSCR1::TFE3, the fusion transcription factor causatively associated with ASPS, is dispensable for in vitro tumor maintenance; however, it is required for in vivo tumor development via angiogenesis. ASPSCR1::TFE3 is frequently associated with super-enhancers (SEs) upon its DNA binding, and the loss of its expression induces SE-distribution dynamic modification related to genes belonging to the angiogenesis pathway. Using epigenomic CRISPR/dCas9 screening, we identify Pdgfb, Rab27a, Sytl2, and Vwf as critical targets associated with reduced enhancer activities due to the ASPSCR1::TFE3 loss. Upregulation of Rab27a and Sytl2 promotes angiogenic factor-trafficking to facilitate ASPS vascular network construction. ASPSCR1::TFE3 thus orchestrates higher ordered angiogenesis via modulating the SE activity.


Subject(s)
Oncogene Proteins, Fusion , Sarcoma, Alveolar Soft Part , Adolescent , Young Adult , Humans , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Sarcoma, Alveolar Soft Part/genetics , Sarcoma, Alveolar Soft Part/diagnosis , Sarcoma, Alveolar Soft Part/pathology , Genes, Regulator , Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Intracellular Signaling Peptides and Proteins/genetics
11.
Br J Cancer ; 128(7): 1208-1222, 2023 03.
Article in English | MEDLINE | ID: mdl-36725920

ABSTRACT

BACKGROUND: Oestrogen receptor (ER) signalling-dependent cancer cell growth is one of the major features of ER-positive breast cancer (BC). Inhibition of ER function is a standard and effective treatment for ER-positive tumours; however, ~20% of patients with ER-positive BC experience early or late recurrence. In this study, we examined intertumour heterogeneity from an epigenetic perspective based on the hypothesis that the intrinsic difference in epigenetic states around ER signalling pathway underlies endocrine therapy resistance. METHODS: We performed transposase-accessible chromatin sequencing (ATAC-seq) analysis of 42 BC samples, including 35 ER-positive(+) human epidermal growth factor receptor 2 (HER2)-negative(-) and 7 triple-negative tumours. We also reanalysed ATAC-seq data of 45 ER + /HER2 - tumours in the Cancer Genome Atlas (TCGA) BC cohort to validate our observations. RESULTS: We conducted a comprehensive analysis of cis-regulatory elements (CREs) using ATAC-seq, identifying three subgroups based on chromatin accessibility profiles. We identified a subgroup of ER-positive BCs with a distinctive chromatin accessibility pattern including reduced accessibility to ER-responsive elements (EREs). The same subgroup was also observed in TCGA BC cohort. Despite the reduced accessibility to EREs, the expression of ER and potential ER target genes were not decreased in these tumours. CONCLUSION: Our findings highlight the existence of a subset of ER-positive BCs with unchanged ER expression but reduced EREs accessibility that cannot be distinguished by conventional immunostaining for ER. Future studies should determine whether these tumours are associated with resistance to endocrine therapy.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/pathology , Chromatin/genetics , Receptors, Estrogen/genetics , Receptors, Estrogen/metabolism , Treatment Outcome , Signal Transduction
12.
Breast Cancer Res ; 25(1): 21, 2023 02 21.
Article in English | MEDLINE | ID: mdl-36810117

ABSTRACT

BACKGROUND: The intratumor heterogeneity (ITH) of cancer cells plays an important role in breast cancer resistance and recurrence. To develop better therapeutic strategies, it is necessary to understand the molecular mechanisms underlying ITH and their functional significance. Patient-derived organoids (PDOs) have recently been utilized in cancer research. They can also be used to study ITH as cancer cell diversity is thought to be maintained within the organoid line. However, no reports investigated intratumor transcriptomic heterogeneity in organoids derived from patients with breast cancer. This study aimed to investigate transcriptomic ITH in breast cancer PDOs. METHODS: We established PDO lines from ten patients with breast cancer and performed single-cell transcriptomic analysis. First, we clustered cancer cells for each PDO using the Seurat package. Then, we defined and compared the cluster-specific gene signature (ClustGS) corresponding to each cell cluster in each PDO. RESULTS: Cancer cells were clustered into 3-6 cell populations with distinct cellular states in each PDO line. We identified 38 clusters with ClustGS in 10 PDO lines and used Jaccard similarity index to compare the similarity of these signatures. We found that 29 signatures could be categorized into 7 shared meta-ClustGSs, such as those related to the cell cycle or epithelial-mesenchymal transition, and 9 signatures were unique to single PDO lines. These unique cell populations appeared to represent the characteristics of the original tumors derived from patients. CONCLUSIONS: We confirmed the existence of transcriptomic ITH in breast cancer PDOs. Some cellular states were commonly observed in multiple PDOs, whereas others were specific to single PDO lines. The combination of these shared and unique cellular states formed the ITH of each PDO.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/metabolism , Transcriptome , Breast , Gene Expression Profiling , Organoids/metabolism
13.
Cell Res ; 33(2): 165-183, 2023 02.
Article in English | MEDLINE | ID: mdl-36646760

ABSTRACT

Estrogen-related receptors (ERRα/ß/γ) are orphan nuclear receptors that function in energy-demanding physiological processes, as well as in development and stem cell maintenance, but mechanisms underlying target gene activation by ERRs are largely unknown. Here, reconstituted biochemical assays that manifest ERR-dependent transcription have revealed two complementary mechanisms. On DNA templates, ERRs activate transcription with just the normal complement of general initiation factors through an interaction of the ERR DNA-binding domain with the p52 subunit of initiation factor TFIIH. On chromatin templates, activation by ERRs is dependent on AF2 domain interactions with the cell-specific coactivator PGC-1α, which in turn recruits the ubiquitous p300 and MED1/Mediator coactivators. This role of PGC-1α may also be fulfilled by other AF2-interacting coactivators like NCOA3, which is shown to recruit Mediator selectively to ERRß and ERRγ. Importantly, combined genetic and RNA-seq analyses establish that both the TFIIH and the AF2 interaction-dependent pathways are essential for ERRß/γ-selective gene expression and pluripotency maintenance in embryonic stem cells in which NCOA3 is a critical coactivator.


Subject(s)
Furylfuramide , Orphan Nuclear Receptors , DNA , Promoter Regions, Genetic , Transcriptional Activation , Receptors, Estrogen/metabolism
14.
Mol Biol Rep ; 50(2): 1209-1220, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36436079

ABSTRACT

BACKGROUND: Estrogen receptor alpha (ERα) is a frequently mutated gene in breast cancer (BC). While many studies have investigated molecular dysregulation by hotspot mutations at Y537 and D538, which exhibit an estrogen-independent constitutively active phenotype, the functional abnormalities of other mutations remain obscure. The K303R mutation in primary invasive BC has been implicated with endocrine resistance, tumor size, and lymph node positivity. However, the impact of the K303R mutation on the cell epigenome is yet unknown. METHODS AND RESULTS: We introduced the K303R ERα mutant in ERα-negative MDA-MB-453 cells to monitor ERα-dependent transactivation and to perform epigenomic analyses. ATAC-seq and ChIP-Seq analyses indicated that both wild-type (WT) and the K303R mutant associated with Forkhead box (Fox) protein family motif regions at similar rates, even without an ERα-binding sequence, but only the K303R mutant induced chromatin opening at those regions. Biochemical analyses demonstrated that the WT and the K303R mutant can be tethered on DNA by FoxA1 indirectly, but only the K303R/FoxA1/DNA complex can induce associations with the nuclear receptor cofactor 2 (NCOA2). CONCLUSIONS: These findings suggest that the K303R mutant induces chromatin opening at the Fox binding region through the FoxA1-dependent associations of the K303R mutant to NCOA2 and then probably disrupts the regulation of Fox-target genes, resulting in K303R-related BC events.


Subject(s)
Chromatin , Estrogen Receptor alpha , Forkhead Transcription Factors , Hepatocyte Nuclear Factor 3-alpha , Humans , Cell Line, Tumor , Chromatin/genetics , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Estrogens/pharmacology , Forkhead Transcription Factors/genetics , Gene Expression Regulation, Neoplastic , Mutation/genetics , Protein Binding , Hepatocyte Nuclear Factor 3-alpha/metabolism
15.
NPJ Breast Cancer ; 8(1): 70, 2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35676392

ABSTRACT

In breast cancer patients, tumor heterogeneity is associated with prognosis and therapeutic response; however, the epigenetic diversity that exists in primary tumors remains unknown. Using a single-cell sequencing assay for transposase-accessible chromatin (scATAC-seq), we obtained the chromatin accessibility profiles of 12,452 cells from 16 breast cancer patients including 11 luminal, 1 luminal-HER2, 1 HER2+, and 3 triple-negative subtypes. Via this profiling process, tumors were classified into cancer cells and the tumor microenvironment, highlighting the heterogeneity of disease-related pathways including estrogen receptor (ER) signaling. Furthermore, the coexistence of cancer cell clusters with different ER binding motif enrichments was identified in a single ER+ tumor. In a cluster with reduced ER motif enrichment, we identified GRHL2, a transcription factor, as the most enriched motif, and it cooperated with FOXA1 to initiate endocrine resistance. Coaccessibility analysis revealed that GRHL2 binding elements potentially regulate genes associated with endocrine resistance, metastasis, and poor prognosis in patients that received hormonal therapy. Overall, our study suggests that epigenetic heterogeneity could lead to endocrine resistance and poor prognosis in breast cancer patients and it offers a large-scale resource for further cancer research.

16.
Sci Rep ; 6: 26699, 2016 05 24.
Article in English | MEDLINE | ID: mdl-27215978

ABSTRACT

Long noncoding RNAs (lncRNAs) have emerged as key components in multiple cellular processes, although their physiological and pathological functions are not fully understood. To identify cancer-related lncRNAs, we screened for those that are epigenetically silenced in colorectal cancer (CRC). Through a genome-wide analysis of histone modifications in CRC cells, we found that the transcription start sites (TSSs) of 1,027 lncRNA genes acquired trimethylation of histone H3 lysine 4 (H3K4me3) after DNA demethylation. Integrative analysis of chromatin signatures and the DNA methylome revealed that the promoter CpG islands (CGIs) of 66 lncRNA genes contained cancer-specific methylation. By validating the expression and methylation of lncRNA genes in CRC cells, we ultimately identified 20 lncRNAs, including ZNF582-AS1, as targets of epigenetic silencing in CRC. ZNF582-AS1 is frequently methylated in CRC cell lines (87.5%), primary CRCs (77.2%), colorectal adenomas (44.7%) and advanced adenomas (87.8%), suggesting that this methylation is an early event during colorectal tumorigenesis. Methylation of ZNF582-AS1 is associated with poor survival of CRC patients, and ectopic expression of ZNF582-AS1 suppressed colony formation by CRC cells. Our findings offer insight into the association between epigenetic alterations and lncRNA dysregulation in cancer and suggest that ZNF582-AS1 may be a novel tumor-suppressive lncRNA.


Subject(s)
Colorectal Neoplasms , DNA Methylation , DNA, Neoplasm , Gene Expression Regulation, Neoplastic , Gene Silencing , RNA, Long Noncoding , RNA, Neoplasm , Cell Line, Tumor , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , DNA, Neoplasm/genetics , DNA, Neoplasm/metabolism , Female , Humans , Male , RNA, Long Noncoding/biosynthesis , RNA, Long Noncoding/genetics , RNA, Neoplasm/biosynthesis , RNA, Neoplasm/genetics
17.
Cancer Prev Res (Phila) ; 7(10): 1002-10, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25139296

ABSTRACT

Aberrant DNA methylation could potentially serve as a biomarker for colorectal neoplasms. In this study, we assessed the feasibility of using DNA methylation detected in bowel lavage fluid (BLF) for colorectal cancer screening. A total of 508 BLF specimens were collected from patients with colorectal cancer (n = 56), advanced adenoma (n = 53), minor polyp (n = 209), and healthy individuals (n = 190) undergoing colonoscopy. Methylation of 15 genes (miR-1-1, miR-9-1, miR-9-3, miR-34b/c, miR-124-1, miR-124-2, miR-124-3, miR-137, SFRP1, SFRP2, APC, DKK2, WIF1, LOC386758, and ZNF582) was then analyzed in MethyLight assays, after which receiver operating characteristic (ROC) curves were analyzed to assess the diagnostic performance of BLF methylation. Through analyzing BLF specimens in a training set (n = 345), we selected the three genes showing the greatest sensitivity for colorectal cancer detection (miR-124-3, 71.8%; LOC386758, 79.5%; and SFRP1, 74.4%). A scoring system based on the methylation of those three genes (M-score) achieved 82% sensitivity and 79% specificity, and the area under the ROC curve (AUC) was 0.834. The strong performance of this system was then validated in an independent test set (n = 153; AUC = 0.808). No significant correlation was found between M-score and the clinicopathologic features of the colorectal cancers. Our results demonstrate that DNA methylation in BLF specimens may be a useful biomarker for the detection of colorectal cancer.


Subject(s)
Adenoma/diagnosis , Adenoma/genetics , Colonic Polyps/diagnosis , Colonic Polyps/genetics , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/genetics , DNA Methylation , Early Detection of Cancer/methods , Adult , Aged , Aged, 80 and over , Area Under Curve , Biomarkers, Tumor/genetics , Colonoscopy , Female , Gene Expression Regulation, Neoplastic , Healthy Volunteers , Humans , Japan , Male , Middle Aged , Occult Blood , Polyps , ROC Curve , Sensitivity and Specificity , Therapeutic Irrigation , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL
...