Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 88
Filter
1.
Breast Cancer Res ; 26(1): 131, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39256827

ABSTRACT

BACKGROUND: Breast cancer is the second leading cause of death in women, with invasive ductal carcinoma (IDC) and invasive lobular carcinoma (ILC) as the two most common forms of invasive breast cancer. While estrogen receptor positive (ER+) IDC and ILC are treated similarly, the multifocality of ILC presents challenges in detection and treatment, worsening long-term clinical outcomes in patients. With increasing documentation of chemoresistance in ILC, additional treatment options are needed. Oncolytic adenoviral therapy may be a promising option, but cancer cells must express the coxsackievirus & adenovirus receptor (CAR) for adenoviral therapy to be effective. The present study aims to evaluate the extent to which CAR expression is observed in ILC in comparison to IDC, and how the levels of CAR expression correlate with adenovirus transduction efficiency. The effect of liposome encapsulation on transduction efficiency is also assessed. METHODS: To characterize CAR expression in invasive breast carcinoma, 36 formalin-fixed paraffin-embedded (FFPE) human breast tumor samples were assayed by CAR immunohistochemistry (IHC). Localization of CAR in comparison to other junctional proteins was performed using a multiplex immunofluorescence panel consisting of CAR, p120-catenin, and E-cadherin. ILC and IDC primary tumors and cell lines were transduced with E1- and E3-deleted adenovirus type 5 inserted with a GFP transgene (Ad-GFP) and DOTAP liposome encapsulated Ad-GFP (DfAd-GFP) at various multiplicities of infection (MOIs). Transduction efficiency was measured using a fluorescence plate reader. CAR expression in the human primary breast carcinomas and cell lines was also evaluated by IHC. RESULTS: We observed membranous CAR, p120-catenin and E-cadherin expression in IDC. In ILC, we observed cytoplasmic expression of CAR and p120-catenin, with absent E-cadherin. Adenovirus effectively transduced high-CAR IDC cell lines, at MOIs as low as 12.5. Ad-GFP showed similar transduction as DfAd-GFP in high-CAR IDC cell lines. Conversely, Ad-GFP transduction of ILC cell lines was observed only at MOIs of 50 and 100. Furthermore, Ad-GFP did not transduce CAR-negative IDC cell lines even at MOIs greater than 100. Liposome encapsulation (DfAd-GFP) improved transduction efficiency 4-fold in ILC and 17-fold in CAR-negative IDC cell lines. CONCLUSION: The present study demonstrates that oncolytic adenoviral therapy is less effective in ILC than IDC due to differences in spatial CAR expression. Liposome-enhanced delivery may be beneficial for patients with ILC and tumors with low or negative CAR expression to improve adenoviral therapeutic effectiveness.


Subject(s)
Adenoviridae , Breast Neoplasms , Coxsackie and Adenovirus Receptor-Like Membrane Protein , Transduction, Genetic , Humans , Female , Breast Neoplasms/therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Adenoviridae/genetics , Coxsackie and Adenovirus Receptor-Like Membrane Protein/metabolism , Coxsackie and Adenovirus Receptor-Like Membrane Protein/genetics , Cell Line, Tumor , Carcinoma, Lobular/metabolism , Carcinoma, Lobular/therapy , Carcinoma, Lobular/genetics , Carcinoma, Lobular/pathology , Carcinoma, Ductal, Breast/metabolism , Carcinoma, Ductal, Breast/genetics , Carcinoma, Ductal, Breast/pathology , Carcinoma, Ductal, Breast/therapy , Cadherins/metabolism , Cadherins/genetics , Genetic Vectors/genetics , Genetic Vectors/administration & dosage , Liposomes
2.
ACS Appl Mater Interfaces ; 16(39): 53098-53105, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39287622

ABSTRACT

AlN is deposited on silicon carbide (SiC) for high-power electronics; in these devices, AlN acts as both a buffer layer for the growth of the active device and a thermal conductor. However, the mechanism of thermal transport through the AlN-SiC interfaces and through grain boundaries of AlN has not been clearly analyzed, even though AlN forms grain boundaries during the deposition process. The thermal properties of the AlN-SiC interface and the inversion domain boundaries (IDBs) of AlN were examined by a phonon transport model based on a nonequilibrium Green function formalism and first-principles calculations. The interface and grain boundary models were designed, and the thermal resistances (TRs) and origins of TR were examined. The TRs of the AlN-SiC interface and the IDB of AlN are much higher than the TRs of AlN and SiC of relevant thickness. Elemental intermixing and vacancy formation were modeled. The formation of charge-balanced defect of VAl + 3ON is thermodynamically favorable compared to other defects, indicating that ON induces formation of VAl. The charge-balanced defect combining VAl and ON increases the TRs of both AlN-SiC interfaces and AlN grain boundaries because vacancy defects induce larger changes in mass than all other defects, and TRs are proportional to changes in mass. In addition, VAl defects are increased by excess ON, resulting in a continuous increase in TR, and then, the calculated thermal boundary resistance (TBR) of the AlN-SiC interface with increased density of VAl by excess ON reaches the experimental TBR. Therefore, it is expected that the large increase in TR by the formation of VAl + ON would be suppressed by controlling the low O density during synthesis.

3.
ACS Appl Mater Interfaces ; 16(27): 35043-35052, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38941589

ABSTRACT

Titanium (Ti) is widely used as anode current collectors in proton exchange membrane (PEM)-based water electrolyzers due to its self-passivated oxide layer, which protects it from corrosion in acidic solutions. However, the cost of the material and machining process for Ti is high. A wider utilization of water electrolyzers to produce hydrogen could be favored by the use of less expensive coated aluminum (Al) substrates, which could potentially replace high-cost Ti-based components. It is shown here by depositing a pinhole-free oxygen vacancy-rich titanium oxide (TiOx) protection layer by atomic layer deposition (ALD), the corrosion resistance of Al substrates in acidic environments at oxygen evolution potentials can be enhanced. The optimization of the oxygen vacancy concentration is accomplished by tuning the ALD parameters to achieve ideal stoichiometry and conformal coating on rough substrates. The robustness of the coatings was evaluated at high potentials (2.4 V vs NHE = normal hydrogen electrode) in low pH conditions. A low TiOx dissolution rate of the order of ∼6 nm year-1 was observed. By testing under industrially relevant conditions, i.e., high applied voltages (2.4 V) and low pH, an Al loss at around the zero ppb level was achieved using optimized ALD parameters. It is proposed that a 40 nm TiOx coating on Al may be adequate to provide 60,000 h of durability in a PEM water electrolyzer anode current collector.

4.
ACS Appl Mater Interfaces ; 16(20): 26664-26673, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38739213

ABSTRACT

High-power impulse magnetron sputtering (HiPIMS) plus kick is a physical vapor deposition method that employs bipolar microsecond-scale voltage pulsing to precisely control the ion energy during sputter deposition. HiPIMS plus kick for AlN deposition is difficult since nitride deposition is challenged by low surface diffusion and high susceptibility to ion damage. In this current study, a systematic examination of the process parameters of HiPIMS plus kick was conducted. Under optimized main negative pulsing conditions, this study documented that a 25 V positive kick biasing for AlN deposition is ideal for optimizing a high quality film, as shown by X-ray diffraction and transmission electron microscopy as well as optimal thermal conductivity while increasing high speed deposition (25 nm/min) and obtaining ultrasmooth surfaces (rms roughness = 0.5 nm). HiPIMS plus kick was employed to deposit a single-texture 1 µm AlN film with a 7.4° rocking curve, indicating well oriented grains, which correlated with high thermal conductivity (121 W/m·K). The data are consistent with the optimal kick voltage enabling enhanced surface diffusion due to ion-substrate collisions without damaging the AlN grains.

5.
ACS Nano ; 17(21): 21240-21250, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37796248

ABSTRACT

Aluminum nitride (AlN) is one of the few electrically insulating materials with excellent thermal conductivity, but high-quality films typically require exceedingly hot deposition temperatures (>1000 °C). For thermal management applications in dense or high-power integrated circuits, it is important to deposit heat spreaders at low temperatures (<500 °C), without affecting the underlying electronics. Here, we demonstrate 100 nm to 1.7 µm thick AlN films achieved by low-temperature (<100 °C) sputtering, correlating their thermal properties with their grain size and interfacial quality, which we analyze by X-ray diffraction, transmission X-ray microscopy, as well as Raman and Auger spectroscopy. Controlling the deposition conditions through the partial pressure of reactive N2, we achieve an ∼3× variation in thermal conductivity (∼36-104 W m-1 K-1) of ∼600 nm films, with the upper range representing one of the highest values for such film thicknesses at room temperature, especially at deposition temperatures below 100 °C. Defect densities are also estimated from the thermal conductivity measurements, providing insight into the thermal engineering of AlN that can be optimized for application-specific heat spreading or thermal confinement.

6.
Cancers (Basel) ; 15(12)2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37370769

ABSTRACT

This study evaluated the in vivo therapeutic efficacy of oncolytic serotype 5 adenovirus TAV255 in CAR-deficient tumors. In vitro experiments were performed with cell lines that expressed different levels of CAR (HEK293, A549, CT26, 4T1, and MCF-7). Low CAR cells, such as CT26, were poorly transduced by Ad in vitro unless the adenovirus was encapsulated in liposomes. However, the CT26 tumor in an immune-competent mouse model responded to the unencapsulated TAV255; 33% of the tumors were induced into complete remission, and mice with complete remission rejected the rechallenge with cancer cell injection. Encapsulation of TAV255 improves its therapeutic efficacy by transducing more CT26 cells, as expected from in vitro results. In a bilateral tumor model, nonencapsulated TAV255 reduced the growth rate of the locally treated tumors but had no effect on the growth rate of the distant tumor site. Conversely, encapsulated TAV255-infected CT26 induced a delayed growth rate of both the primary injected tumor and the distant tumor, consistent with a robust immune response. In vivo, intratumorally injected unencapsulated adenoviruses infect CAR-negative cells with only limited efficiency. However, unencapsulated adenoviruses robustly inhibit the growth of CAR-deficient tumors, an effect that constitutes an 'in situ vaccination' by stimulating cytotoxic T cells.

7.
Bioengineering (Basel) ; 9(11)2022 Oct 27.
Article in English | MEDLINE | ID: mdl-36354531

ABSTRACT

Adenovirus (Ad) is a widely studied viral vector for cancer therapy as it can be engineered to cause selective lysis of cancer cells. However, Ad delivery is limited in treating cancers that do not have coxsackievirus and adenovirus receptors (CAR). To overcome this challenge, Ad-encapsulated liposomes were developed that enhance the delivery of Ads and increase therapeutic efficacy. Cationic empty liposomes were manufactured first, to which an anionic Ad were added, which resulted in encapsulated Ad liposomes through charge interaction. Optimization of the liposome formula was carried out with series of formulation variables experiments using an extrusion process, which is ideal for laboratory-scale small batches. Later, the optimized formulation was manufactured with a homogenization technique-A high shear rotor-stator blending, that is ideal for large-scale manufacturing and is in compliance with Good Manufacturing Practices (GMP). Comparative in vitro transduction, physicochemical characterization, long-term storage stability at different temperature conditions, and in vivo animal studies were performed. Ad encapsulated liposomes transduced CAR deficient cells 100-fold more efficiently than the unencapsulated Ad (p ≤ 0.0001) in vitro, and 4-fold higher in tumors injected in nude mice in vivo. Both extrusion and homogenization performed similarly-with equivalent in vitro and in vivo transduction efficiencies, physicochemical characterization, and long-term storage stability. Thus, two Ad encapsulated liposomes preparation methods used herein, i.e., extrusion vs. homogenization were equivalent in terms of enhanced Ad performance and long-term storage stability; this will, hopefully, facilitate translation to the clinic.

8.
ACS Biomater Sci Eng ; 8(12): 5199-5209, 2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36395425

ABSTRACT

Adenovirus (Ad)-based vectors have shown considerable promise for gene therapy. However, Ad requires the coxsackievirus and adenovirus receptor (CAR) to enter cells efficiently and low CAR expression is found in many human cancers, which hinder adenoviral gene therapies. Here, cationic 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP)-folate liposomes (Df) encapsulating replication-deficient Ad were synthesized, which showed improved transfection efficiency in various CAR-deficient cell lines, including epithelial and hematopoietic cell types. When encapsulating replication-competent oncolytic Ad (TAV255) in DOTAP-folate liposome (TAV255-Df), the adenoviral structural protein, hexon, was readily produced in CAR-deficient cells, and the tumor cell killing ability was 5× higher than that of the non-encapsulated Ad. In CAR-deficient CT26 colon carcinoma murine models, replication-competent TAV255-Df treatment of subcutaneous tumors by intratumoral injection resulted in 67% full tumor remission, prolonged survival, and anti-cancer immunity when mice were rechallenged with cancer cells with no further treatment. The preclinical data shows that DOTAP-folate liposomes could significantly enhance the transfection efficiency of Ad in CAR-deficient cells and, therefore, could be a feasible strategy for applications in cancer treatment.


Subject(s)
Adenoviridae , Neoplasms , Mice , Humans , Animals , Adenoviridae/genetics , Adenoviridae/metabolism , Liposomes/metabolism , Propane , Folic Acid/metabolism
9.
ACS Appl Mater Interfaces ; 14(38): 43897-43906, 2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36121320

ABSTRACT

Discovery of ferroelectricity in HfO2 has sparked a lot of interest in its use in memory and logic due to its CMOS compatibility and scalability. Devices that use ferroelectric HfO2 are being investigated; for example, the ferroelectric field-effect transistor (FEFET) is one of the leading candidates for next generation memory technology, due to its area, energy efficiency and fast operation. In an FEFET, a ferroelectric layer is deposited on Si, with an SiO2 layer of ∼1 nm thickness inevitably forming at the interface. This interfacial layer (IL) increases the gate voltage required to switch the polarization and write into the memory device, thereby increasing the energy required to operate FEFETs, and makes the technology incompatible with logic circuits. In this work, it is shown that a Pt/Ti/thin TiN gate electrode in a ferroelectric Hf0.5Zr0.5O2 based metal-oxide-semiconductor (MOS) structure can remotely scavenge oxygen from the IL, thinning it down to ∼0.5 nm. This IL reduction significantly reduces the ferroelectric polarization switching voltage with a ∼2× concomitant increase in the remnant polarization and a ∼3× increase in the abruptness of polarization switching consistent with density functional theory (DFT) calculations modeling the role of the IL layer in the gate stack electrostatics. The large increase in remnant polarization and abruptness of polarization switching are consistent with the oxygen diffusion in the scavenging process reducing oxygen vacancies in the HZO layer, thereby depinning the polarization of some of the HZO grains.

10.
ACS Appl Mater Interfaces ; 14(25): 29007-29013, 2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35713418

ABSTRACT

First-principles calculations show a reduced energy barrier for polarization switching via a bulk phase transition by doping of hafnium-zirconium oxide (HZO). The tetragonal P42/nmc phase serves as a transition state for polarization switching of the polar orthorhombic Pca21 phase. Due to the high symmetry of the tetragonal phase, dopants can form more energetically favorable local oxygen bonding configurations in the tetragonal phase versus the orthorhombic phase. Significant bond strain is observed in the orthorhombic phase due to the low symmetry of the host crystal structure which decreases the relative stability of the doped orthorhombic phase compared to the doped tetragonal phase, thereby significantly lowering the barrier for switching but slightly affecting the polarization of the orthorhombic phase. Si is a promising dopant for an efficient ferroelectric device with minimal disturbance in the electronic structure parameters. Ge doping is suitable for stabilizing the tetragonal phase which shows a high k value.

11.
ACS Appl Mater Interfaces ; 14(13): 15716-15727, 2022 Apr 06.
Article in English | MEDLINE | ID: mdl-35316031

ABSTRACT

Highly selective and smooth TiO2/Al2O3 and HfO2/Al2O3 nanolaminates were deposited by water-free pulsed chemical vapor deposition (CVD) at 300 °C using titanium isopropoxide (Ti(OiPr)4) and hafnium tertbutoxide (Hf(OtBu)4) with trimethylaluminum (TMA). TMA was found to be the key factor for enhancing nucleation selectivity on SiO2 or Si versus SiCOH (hydrophobic, nonporous low k dielectric). With precise dosing of TMA, selective nucleation of TiO2/Al2O3 and HfO2/Al2O3 nanolaminates was achieved and smoother films were formed with higher selectivity compared to single precursor TiO2 and HfO2 CVD. The selectivity of TiO2/Al2O3 nanolaminate deposition increased from 34 to 44 (deposition on Si vs SiCOH), while RMS roughness of the film of Si decreased from 2.8 to 0.38 nm. The selectivity of HfO2/Al2O3 deposition increased from 14 to 73, while the RMS roughness of HfO2/Al2O3 on Si was maintained at a similar value of 0.78 nm. Deposition of water-free pulsed CVD TiO2/Al2O3 and HfO2/Al2O3 nanolaminates was conducted on a Cu/SiCOH patterned sample to study their nanoselectivity. Transmission electron microscopy images of the Cu/SiCOH patterned sample demonstrated that highly selective and smooth TiO2/Al2O3 and HfO2/Al2O3 nanolaminates can be formed on a nanoscale pattern.

12.
ACS Appl Mater Interfaces ; 14(9): 11873-11882, 2022 Mar 09.
Article in English | MEDLINE | ID: mdl-35192341

ABSTRACT

A new generation of compact and high-speed electronic devices, based on carbon, would be enabled through the development of robust gate oxides with sub-nanometer effective oxide thickness (EOT) on carbon nanotubes or graphene nanoribbons. However, to date, the lack of dangling bonds on sp2 oriented graphene sheets has limited the high precursor nucleation density enabling atomic layer deposition of sub-1 nm EOT gate oxides. It is shown here that by deploying a low-temperature AlOx (LT AlOx) process, involving atomic layer deposition (ALD) of Al2O3 at 50 °C with a chemical vapor deposition (CVD) component, a high nucleation density layer can be formed, which templates the growth of a high-k dielectric, such as HfO2. Atomic force microscopy (AFM) imaging shows that at 50 °C, the Al2O3 spontaneously forms a pinhole-free, sub-2 nm layer on graphene. Density functional theory (DFT) based simulations indicate that the spreading out of AlOx clusters on the carbon surface enables conformal oxide deposition. Device applications of the LT AlOx deposition scheme were investigated through electrical measurements on metal oxide semiconductor capacitors (MOSCAPs) with Al2O3/HfO2 bilayer gate oxides using both standard Ti/Pt metal gates as well as TiN/Ti/Pd gettering gates. In this study, LT AlOx was used to nucleate HfO2 and it was shown that bilayer gate oxide stacks of 2.85 and 3.15 nm were able to achieve continuous coverage on carbon nanotubes (CNTs). The robustness of the bilayer was tested through deployment in a CNT-based field-effect transistor (FET) configuration with a gate leakage of less than 10-8 A/µm per CNT.

13.
Nanoscale Adv ; 3(16): 4750-4755, 2021 Aug 10.
Article in English | MEDLINE | ID: mdl-36134312

ABSTRACT

Density functional theory (DFT) is employed to investigate ferroelectric (FE) hafnium-zirconium oxide stack models for both metal-insulator-metal (MIM) and metal-insulator-semiconductor (MIS) structures. The role of dielectric (DE) interlayers at the ferroelectric interfaces with metals and semiconductors and the effects of thickness scaling of FE and DE layers were investigated using atomic stack models. A high internal field is induced in the FE and DE layers by the FE polarization field which can promote defect generation leading to limited endurance. It is also shown that device operation will be adversely affected by too thick DE interlayers due to high operating voltage. These DFT models elucidate the underlying mechanisms of the lower endurance in experimental MIS devices compared to MIM devices and provide insights into the fundamental mechanisms at the interfaces.

14.
Nanoscale Adv ; 3(17): 5122, 2021 Aug 25.
Article in English | MEDLINE | ID: mdl-36136423

ABSTRACT

[This corrects the article DOI: 10.1039/D1NA00230A.].

15.
J Am Chem Soc ; 142(1): 134-145, 2020 Jan 08.
Article in English | MEDLINE | ID: mdl-31779305

ABSTRACT

Silicon germanium (SiGe) is a multifunctional material considered for quantum computing, neuromorphic devices, and CMOS transistors. However, implementation of SiGe in nanoscale electronic devices necessitates suppression of surface states dominating the electronic properties. The absence of a stable and passive surface oxide for SiGe results in the formation of charge traps at the SiGe-oxide interface induced by GeOx. In an ideal ALD process in which oxide is grown layer by layer, the GeOx formation should be prevented with selective surface oxidation (i.e., formation of an SiOx interface) by controlling the oxidant dose in the first few ALD cycles of the oxide deposition on SiGe. However, in a real ALD process, the interface evolves during the entire ALD oxide deposition due to diffusion of reactant species through the gate oxide. In this work, this diffusion process in nonideal ALD is investigated and exploited: the diffusion through the oxide during ALD is utilized to passivate the interfacial defects by employing ozone as a secondary oxidant. Periodic ozone exposure during gate oxide ALD on SiGe is shown to reduce the integrated trap density (Dit) across the band gap by nearly 1 order of magnitude in Al2O3 (<6 × 1010 cm-2) and in HfO2 (<3.9 × 1011 cm-2) by forming a SiOx-rich interface on SiGe. Depletion of Ge from the interfacial layer (IL) by enhancement of volatile GeOx formation and consequent desorption from the SiGe with ozone insertion during the ALD growth process is confirmed by electron energy loss spectroscopy (STEM-EELS) and hypothesized to be the mechanism for reduction of the interfacial defects. In this work, the nanoscale mechanism for defect suppression at the SiGe-oxide interface is demonstrated, which is engineering of diffusion species in the ALD process due to facile diffusion of reactant species in nonideal ALD.

16.
Adv Ther (Weinh) ; 3(6)2020 Jun.
Article in English | MEDLINE | ID: mdl-33644299

ABSTRACT

Mono- or dual-checkpoint inhibitors for immunotherapy have changed the paradigm of cancer care; however, only a minority of patients responds to such treatment. Combining small molecule immuno-stimulators can improve treatment efficacy, but they are restricted by poor pharmacokinetics. In this study, TLR7 agonists conjugated onto silica nanoparticles showed extended drug localization after intratumoral injection. The nanoparticle-based TLR7 agonist increased immune stimulation by activating the TLR7 signaling pathway. When treating CT26 colon cancer, nanoparticle conjugated TLR7 agonists increased T cell infiltration into the tumors by > 4× and upregulated expression of the interferon γ gene compared to its unconjugated counterpart by ~2×. Toxicity assays established that the conjugated TLR7 agonist is a safe agent at the effective dose. When combined with checkpoint inhibitors that target programmed cell death protein 1 (PD-1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), a 10-100× increase in immune cell migration was observed; furthermore, 100 mm3 tumors were treated and a 60% remission rate was observed including remission at contralateral non-injected tumors. The data show that nanoparticle based TLR7 agonists are safe and can potentiate the effectiveness of checkpoint inhibitors in immunotherapy resistant tumor models and promote a long-term specific memory immune function.

17.
ACS Appl Mater Interfaces ; 11(30): 26637-26647, 2019 Jul 31.
Article in English | MEDLINE | ID: mdl-31276378

ABSTRACT

Stimulation of Toll-like receptors (TLRs) and/or NOD-like receptors on immune cells initiates and directs immune responses that are essential for vaccine adjuvants. The small-molecule TLR7 agonist, imiquimod, has been approved by the FDA as an immune response modifier but is limited to topical application due to its poor pharmacokinetics that causes undesired adverse effects. Nanoparticles are increasingly used with innate immune stimulators to mitigate side effects and enhance adjuvant efficacy. In this study, a potent small-molecule TLR7 agonist, 2-methoxyethoxy-8-oxo-9-(4-carboxybenzyl)adenine (1V209), was conjugated to hollow silica nanoshells (NS). Proinflammatory cytokine (IL-6, IL-12) release by mouse bone-marrow-derived dendritic cells and human peripheral blood mononuclear cells revealed that the potency of silica nanoshells-TLR7 conjugates (NS-TLR) depends on nanoshell size and ligand coating density. Silica nanoshells of 100 nm diameter coated with a minimum of ∼6000 1V209 ligands/particle displayed 3-fold higher potency with no observed cytotoxicity when compared to an unconjugated TLR7 agonist. NS-TLR activated the TLR7-signaling pathway, triggered caspase activity, and stimulated IL-1ß release, while neither unconjugated TLR7 ligands nor silica shells alone produced IL-1ß. An in vivo murine immunization study, using the model antigen ovalbumin, demonstrated that NS-TLR increased antigen-specific IgG antibody induction by 1000× with a Th1-biased immune response, compared to unconjugated TLR7 agonists. The results show that the TLR7 ligand conjugated to silica nanoshells is capable of activating an inflammasome pathway to enhance both innate immune-stimulatory and adjuvant potencies of the TLR7 agonist, thereby broadening applications of innate immune stimulators.


Subject(s)
Imiquimod/immunology , Immunity, Innate/drug effects , Immunoconjugates/immunology , Toll-Like Receptor 7/immunology , Adjuvants, Immunologic/chemistry , Adjuvants, Immunologic/pharmacology , Animals , Bone Marrow Cells/drug effects , Humans , Imiquimod/chemistry , Imiquimod/therapeutic use , Immunity, Innate/genetics , Immunoconjugates/chemistry , Immunoconjugates/therapeutic use , Interleukin-12/genetics , Interleukin-12/immunology , Interleukin-6/genetics , Interleukin-6/immunology , Mice , Nanoshells/chemistry , Signal Transduction/drug effects , Silicon Dioxide/chemistry , Toll-Like Receptor 7/agonists , Toll-Like Receptor 7/genetics
18.
ACS Nano ; 13(7): 7545-7555, 2019 Jul 23.
Article in English | MEDLINE | ID: mdl-31260257

ABSTRACT

Chemical functionalization is demonstrated to enhance the p-type electrical performance of two-dimensional (2D) layered tungsten diselenide (WSe2) field-effect transistors (FETs) using a one-step dipping process in an aqueous solution of ammonium sulfide [(NH4)2S(aq)]. Molecularly resolved scanning tunneling microscopy and spectroscopy reveal that molecular adsorption on a monolayer WSe2 surface induces a reduction of the electronic band gap from 2.1 to 1.1 eV and a Fermi level shift toward the WSe2 valence band edge (VBE), consistent with an increase in the density of positive charge carriers. The mechanism of electronic transformation of WSe2 by (NH4)2S(aq) chemical treatment is elucidated using density functional theory calculations which reveal that molecular "SH" adsorption on the WSe2 surface introduces additional in-gap states near the VBE, thereby, inducing a Fermi level shift toward the VBE along with a reduction in the electronic band gap. As a result of the (NH4)2S(aq) chemical treatment, the p-branch ON-currents (ION) of back-gated few-layer ambipolar WSe2 FETs are enhanced by about 2 orders of magnitude, and a ∼6× increase in the hole field-effect mobility is observed, the latter primarily resulting from the p-doping-induced narrowing of the Schottky barrier width leading to an enhanced hole injection at the WSe2/contact metal interface. This (NH4)2S(aq) chemical functionalization technique can serve as a model method to control the electronic band structure and enhance the performance of devices based on 2D layered transition-metal dichalcogenides.

19.
ACS Appl Mater Interfaces ; 11(16): 15111-15121, 2019 Apr 24.
Article in English | MEDLINE | ID: mdl-30938163

ABSTRACT

Suppression of electronic defects induced by GeO x at the high- k gate oxide/SiGe interface is critical for implementation of high-mobility SiGe channels in complementary metal-oxide-semiconductor (CMOS) technology. Theoretical and experimental studies have shown that a low defect density interface can be formed with an SiO x-rich interlayer on SiGe. Experimental studies in the literature indicate a better interface formation with Al2O3 in contrast to HfO2 on SiGe; however, the mechanism behind this is not well understood. In this study, the mechanism of forming a low defect density interface between Al2O3/SiGe is investigated using atomic layer deposited (ALD) Al2O3 insertion into or on top of ALD HfO2 gate oxides. To elucidate the mechanism, correlations are made between the defect density determined by impedance measurements and the chemical and physical structures of the interface determined by high-resolution scanning transmission electron microscopy and electron energy loss spectroscopy. The compositional analysis reveals an SiO x rich interlayer for both Al2O3/SiGe and HfO2/SiGe interfaces with the insertion of Al2O3 into or on top of the HfO2 oxide. The data is consistent with the Al2O3 insertion inducing decomposition of the GeO x from the interface to form an electrically passive, SiO x rich interface on SiGe. This mechanism shows that nanolaminate gate oxide chemistry cannot be interpreted as resulting from a simple layer-by-layer ideal ALD process, because the precursor or its reaction products can diffuse through the oxide during growth and react at the semiconductor interface. This result shows that in scaled CMOS, remote oxide ALD (oxide ALD on top of the gate oxide) can be used to suppress electronic defects at gate oxide semiconductor interfaces by oxygen scavenging.

20.
Adv Funct Mater ; 29(33)2019 Aug 15.
Article in English | MEDLINE | ID: mdl-34326713

ABSTRACT

Silica particles are convenient ultrasound imaging contrast agents because of their long imaging time and ease of modification; however, they require a relatively high insonation power for imaging and have low biodegradability. In this study, 2 µm ultrathin asymmetric hollow silica particles doped with iron (III) (Fe(III)-SiO2) are synthesized to produce biodegradable hard shelled particles with a low acoustic power threshold comparable with commercial soft microbubble contrast agents (Definity) yet with much longer in vivo ultrasound imaging time. Furthermore, high intensity focused ultrasound ablation enhancement with these particles shows a 2.5-fold higher temperature elevation than with Definity at the same applied power. The low power visualization improves utilization of the silica shells as an adjuvant in localized immunotherapy. The data are consistent with asymmetric engineering of hard particle properties that improve functionality of hard versus soft particles.

SELECTION OF CITATIONS
SEARCH DETAIL