Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Phys Rev Lett ; 132(5): 056002, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38364146

ABSTRACT

We investigated the high energy spin excitations in electron-doped La_{2-x}Ce_{x}CuO_{4}, a cuprate superconductor, by resonant inelastic x-ray scattering (RIXS) measurements. Efforts were paid to disentangle the paramagnon signal from non-spin-flip spectral weight mixing in the RIXS spectrum at Q_{∥}=(0.6π,0) and (0.9π,0) along the (1 0) direction. Our results show that, for doping level x from 0.07 to 0.185, the variation of the paramagnon excitation energy is marginal. We discuss the implication of our results in connection with the evolution of the electron correlation strength in this system.

2.
Nat Commun ; 14(1): 5422, 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37669952

ABSTRACT

Collective spin excitations in magnetically ordered crystals, called magnons or spin waves, can serve as carriers in novel spintronic devices with ultralow energy consumption. The generation of well-detectable spin flows requires long lifetimes of high-frequency magnons. In general, the lifetime of spin waves in a metal is substantially reduced due to a strong coupling of magnons to the Stoner continuum. This makes metals unattractive for use as components for magnonic devices. Here, we present the metallic antiferromagnet CeCo2P2, which exhibits long-living magnons even in the terahertz (THz) regime. For CeCo2P2, our first-principle calculations predict a suppression of low-energy spin-flip Stoner excitations, which is verified by resonant inelastic X-ray scattering measurements. By comparison to the isostructural compound LaCo2P2, we show how small structural changes can dramatically alter the electronic structure around the Fermi level leading to the classical picture of the strongly damped magnons intrinsic to metallic systems. Our results not only demonstrate that long-lived magnons in the THz regime can exist in bulk metallic systems, but they also open a path for an efficient search for metallic magnetic systems in which undamped THz magnons can be excited.

3.
Front Neurol ; 13: 952699, 2022.
Article in English | MEDLINE | ID: mdl-36330424

ABSTRACT

Background and aim: Inflammatory myopathies are heterogeneous in terms of etiology, (immuno)pathology, and clinical findings. Endothelial cell injury, as it occurs in DM, is a common feature of numerous inflammatory and non-inflammatory vascular diseases. Vascular regeneration is mediated by both local and blood-derived mechanisms, such as the mobilization and activation of so-called proangiogenic cells (PACs) or early endothelial progenitor cells (eEPCs). The current study aimed to evaluate parameters of eEPC integrity in dermatomyositis (DM), compared to necrotizing myopathy (NM) and to non-myopathic controls. Methods: Blood samples from DM and NM patients were compared to non-myositis controls and analyzed for the following parameters: circulating CD133+/VEGFR-2+ cells, number of colony-forming unit endothelial cells (CFU-ECs), concentrations of angiopoietin 1, vascular endothelial growth factor (VEGF), and CXCL-16. Muscle biopsies from DM and NM subjects underwent immunofluorescence analysis for CXCR6, nestin, and CD31 (PECAM-1). Finally, myotubes, derived from healthy donors, were stimulated with serum samples from DM and NM patients, subsequently followed by RT-PCR for the following candidates: IL-1ß, IL-6, nestin, and CD31. Results: Seventeen (17) DM patients, 7 NM patients, and 40 non-myositis controls were included. CD133+/VEGFR-2+ cells did not differ between the groups. Both DM and NM patients showed lower CFU-ECs than controls. In DM, intramuscular CD31 abundances were significantly reduced, which indicated vascular rarefaction. Muscular CXCR6 was elevated in both diseases. Circulating CXCL-16 was higher in DM and NM in contrast, compared to controls. Serum from patients with DM but not NM induced a profound upregulation of mRNS expression of CD31 and IL-6 in cultured myotubes. Conclusion: Our study demonstrates the loss of intramuscular microvessels in DM, accompanied by endothelial activation in DM and NM. Vascular regeneration was impaired in DM and NM. The findings suggest a role for inflammation-associated vascular damage in the pathogenesis of DM.

4.
Nat Commun ; 13(1): 6129, 2022 Oct 17.
Article in English | MEDLINE | ID: mdl-36253344

ABSTRACT

Effective models focused on pertinent low-energy degrees of freedom have substantially contributed to our qualitative understanding of quantum materials. An iconic example, the Kondo model, was key to demonstrating that the rich phase diagrams of correlated metals originate from the interplay of localized and itinerant electrons. Modern electronic structure calculations suggest that to achieve quantitative material-specific models, accurate consideration of the crystal field and spin-orbit interactions is imperative. This poses the question of how local high-energy degrees of freedom become incorporated into a collective electronic state. Here, we use resonant inelastic x-ray scattering (RIXS) on CePd3 to clarify the fate of all relevant energy scales. We find that even spin-orbit excited states acquire pronounced momentum-dependence at low temperature-the telltale sign of hybridization with the underlying metallic state. Our results demonstrate how localized electronic degrees of freedom endow correlated metals with new properties, which is critical for a microscopic understanding of superconducting, electronic nematic, and topological states.

5.
Phys Rev Lett ; 129(2): 027002, 2022 Jul 08.
Article in English | MEDLINE | ID: mdl-35867432

ABSTRACT

Superconductivity in infinite-layer nickelates holds exciting analogies with that of cuprates, with similar structures and 3d-electron count. Using resonant inelastic x-ray scattering, we studied electronic and magnetic excitations and charge density correlations in Nd_{1-x}Sr_{x}NiO_{2} thin films with and without an SrTiO_{3} capping layer. We observe dispersing magnons only in the capped samples, progressively dampened at higher doping. We detect an elastic resonant scattering peak in the uncapped x=0 compound at wave vector (∼⅓,0), remindful of the charge order signal in hole doped cuprates. The peak weakens at x=0.05 and disappears in the superconducting x=0.20 film. The role of the capping on the electronic reconstruction far from the interface remains to be understood.

6.
Nat Commun ; 13(1): 570, 2022 Jan 28.
Article in English | MEDLINE | ID: mdl-35091572

ABSTRACT

Hall effect and quantum oscillation measurements on high temperature cuprate superconductors show that underdoped compositions have small Fermi surface pockets whereas when heavily overdoped, a single much larger pocket is found. The origin of this change in electronic structure has been unclear, but may be related to the high temperature superconductivity. Here we show that the clean overdoped single-layer cuprate Tl2Ba2CuO6+δ (Tl2201) displays CDW order with a remarkably long correlation length ξ ≈ 200 Å which disappears above a hole doping of pCDW ≈ 0.265. We show that the evolution of the electronic properties of Tl2201 as the doping is lowered may be explained by a Fermi surface reconstruction which accompanies the emergence of the CDW below pCDW. Our results demonstrate importance of CDW correlations in understanding the electronic properties of overdoped cuprates.

7.
J Phys Chem Lett ; 12(34): 8328-8334, 2021 Sep 02.
Article in English | MEDLINE | ID: mdl-34428055

ABSTRACT

Discovered in 1962, the divalent ferromagnetic semiconductor EuS (TC = 16.5 K, Eg = 1.65 eV) has remained constantly relevant to the engineering of novel magnetically active interfaces, heterostructures, and multilayer sequences and to combination with topological materials. Because detailed information on the electronic structure of EuS and, in particular, its evolution across TC is not well-represented in the literature but is essential for the development of new functional systems, the present work aims at filling this gap. Our angle-resolved photoemission measurements complemented with first-principles calculations demonstrate how the electronic structure of EuS evolves across a paramagnetic-ferromagnetic transition. Our results emphasize the importance of the strong Eu 4f-S 3p mixing for exchange-magnetic splittings of the sulfur-derived bands as well as coupling between f and d orbitals of neighboring Eu atoms to derive the value of TC accurately. The 4f-3p mixing facilitates the coupling between 4f and 5d orbitals of neighboring Eu atoms, which mainly governs the exchange interaction in EuS.

8.
Phys Rev Lett ; 126(3): 037002, 2021 Jan 22.
Article in English | MEDLINE | ID: mdl-33543973

ABSTRACT

We report a comprehensive Cu L_{3}-edge resonant x-ray scattering (RXS) study of two- and three-dimensional (2D and 3D) incommensurate charge correlations in single crystals of the underdoped high-temperature superconductor YBa_{2}Cu_{3}O_{6.67} under uniaxial compression up to 1% along the two inequivalent Cu─O─Cu bond directions (a and b) in the CuO_{2} planes. We confirm the strong in-plane anisotropy of the 2D charge correlations and observe their symmetric response to pressure: pressure along a enhances correlations along b, and vice versa. Our results imply that the underlying order parameter is uniaxial. In contrast, 3D long-range charge order is only observed along b in response to compression along a. Spectroscopic RXS measurements show that the 3D charge order resides exclusively in the CuO_{2} planes and may thus be generic to the cuprates. We discuss implications of these results for models of electronic nematicity and for the interplay between charge order and superconductivity.

9.
Phys Rev Lett ; 124(23): 237202, 2020 Jun 12.
Article in English | MEDLINE | ID: mdl-32603174

ABSTRACT

Spin-orbit interaction and structure inversion asymmetry in combination with magnetic ordering is a promising route to novel materials with highly mobile spin-polarized carriers at the surface. Spin-resolved measurements of the photoemission current from the Si-terminated surface of the antiferromagnet TbRh_{2}Si_{2} and their analysis within an ab initio one-step theory unveil an unusual triple winding of the electron spin along the fourfold-symmetric constant energy contours of the surface states. A two-band k·p model is presented that yields the triple winding as a cubic Rashba effect. The curious in-plane spin-momentum locking is remarkably robust and remains intact across a paramagnetic-antiferromagnetic transition in spite of spin-orbit interaction on Rh atoms being considerably weaker than the out-of-plane exchange field due to the Tb 4f moments.

10.
Phys Rev Lett ; 124(18): 187002, 2020 May 08.
Article in English | MEDLINE | ID: mdl-32441965

ABSTRACT

We use resonant inelastic x-ray scattering to investigate charge-stripe correlations in La_{1.675}Eu_{0.2}Sr_{0.125}CuO_{4}. By differentiating elastic from inelastic scattering, it is demonstrated that charge-stripe correlations precede both the structural low-temperature tetragonal phase and the transport-defined pseudogap onset. The scattering peak amplitude from charge stripes decays approximately as T^{-2} towards our detection limit. The in-plane integrated intensity, however, remains roughly temperature independent. Therefore, although the incommensurability shows a remarkably large increase at high temperature, our results are interpreted via a single scattering constituent. In fact, direct comparison to other stripe-ordered compounds (La_{1.875}Ba_{0.125}CuO_{4}, La_{1.475}Nd_{0.4}Sr_{0.125}CuO_{4}, and La_{1.875}Sr_{0.125}CuO_{4}) suggests a roughly constant integrated scattering intensity across all these compounds. Our results therefore provide a unifying picture for the charge-stripe ordering in La-based cuprates. As charge correlations in La_{1.675}Eu_{0.2}Sr_{0.125}CuO_{4} extend beyond the low-temperature tetragonal and pseudogap phase, their emergence heralds a spontaneous symmetry breaking in this compound.

11.
Phys Rev Lett ; 124(7): 077204, 2020 Feb 21.
Article in English | MEDLINE | ID: mdl-32142323

ABSTRACT

We investigate the spin relaxation of Ho single atom magnets on MgO/Ag(100) as a function of temperature and magnetic field. We find that the spin relaxation is thermally activated at low field, while it remains larger than 1000 s up to 30 K and 8 T. This behavior contrasts with that of single molecule magnets and bulk paramagnetic impurities, which relax faster at high field. Combining our results with density functional theory, we rationalize this unconventional behavior by showing that local vibrations activate a two-phonon Raman process with a relaxation rate that peaks near zero field and is suppressed at high field. Our work shows the importance of these excitations in the relaxation of axially coordinated magnetic atoms.

12.
Nat Commun ; 10(1): 796, 2019 02 15.
Article in English | MEDLINE | ID: mdl-30770811

ABSTRACT

Application of the Luttinger theorem to the Kondo lattice YbRh2Si2 suggests that its large 4f-derived Fermi surface (FS) in the paramagnetic (PM) regime should be similar in shape and volume to that of the divalent local-moment antiferromagnet (AFM) EuRh2Si2 in its PM regime. Here we show by angle-resolved photoemission spectroscopy that paramagnetic EuRh2Si2 has a large FS essentially similar to the one seen in YbRh2Si2 down to 1 K. In EuRh2Si2 the onset of AFM order below 24.5 K induces an extensive fragmentation of the FS due to Brillouin zone folding, intersection and resulting hybridization of the Fermi-surface sheets. Our results on EuRh2Si2 indicate that the formation of the AFM state in YbRh2Si2 is very likely also connected with similar changes in the FS, which have to be taken into account in the controversial analysis and discussion of anomalies observed at the quantum critical point in this system.

13.
Nature ; 563(7731): 374-378, 2018 11.
Article in English | MEDLINE | ID: mdl-30429543

ABSTRACT

High-temperature copper oxide superconductors consist of stacked CuO2 planes, with electronic band structures and magnetic excitations that are primarily two-dimensional1,2, but with superconducting coherence that is three-dimensional. This dichotomy highlights the importance of out-of-plane charge dynamics, which has been found to be incoherent in the normal state3,4 within the limited range of momenta accessible by optics. Here we use resonant inelastic X-ray scattering to explore the charge dynamics across all three dimensions of the Brillouin zone. Polarization analysis of recently discovered collective excitations (modes) in electron-doped copper oxides5-7 reveals their charge origin, that is, without mixing with magnetic components5-7. The excitations disperse along both the in-plane and out-of-plane directions, revealing its three-dimensional nature. The periodicity of the out-of-plane dispersion corresponds to the distance between neighbouring CuO2 planes rather than to the crystallographic c-axis lattice constant, suggesting that the interplane Coulomb interaction is responsible for the coherent out-of-plane charge dynamics. The observed properties are hallmarks of the long-sought 'acoustic plasmon', which is a branch of distinct charge collective modes predicted for layered systems8-12 and argued to play a substantial part in mediating high-temperature superconductivity10-12.

14.
Nat Mater ; 17(8): 697-702, 2018 08.
Article in English | MEDLINE | ID: mdl-29891891

ABSTRACT

In the underdoped regime, the cuprate high-temperature superconductors exhibit a host of unusual collective phenomena, including unconventional spin and charge density modulations, Fermi surface reconstructions, and a pseudogap in various physical observables. Conversely, overdoped cuprates are generally regarded as conventional Fermi liquids possessing no collective electronic order. In partial contradiction to this widely held picture, we report resonant X-ray scattering measurements revealing incommensurate charge order reflections for overdoped (Bi,Pb)2.12Sr1.88CuO6+δ (Bi2201), with correlation lengths of 40-60 lattice units, that persist up to temperatures of at least 250 K. The value of the charge order wavevector decreases with doping, in line with the extrapolation of the trend previously observed in underdoped Bi2201. In overdoped materials, however, charge order coexists with a single, unreconstructed Fermi surface without nesting or pseudogap features. The discovery of re-entrant charge order in Bi2201 thus calls for investigations in other cuprate families and for a reconsideration of theories that posit an essential relationship between these phenomena.

15.
Nat Commun ; 9(1): 2011, 2018 05 22.
Article in English | MEDLINE | ID: mdl-29789552

ABSTRACT

The Kondo model predicts that both the valence at low temperatures and its temperature dependence scale with the characteristic energy TK of the Kondo interaction. Here, we study the evolution of the 4f occupancy with temperature in a series of Yb Kondo lattices using resonant X-ray emission spectroscopy. In agreement with simple theoretical models, we observe a scaling between the valence at low temperature and TK obtained from thermodynamic measurements. In contrast, the temperature scale Tv at which the valence increases with temperature is almost the same in all investigated materials while the Kondo temperatures differ by almost four orders of magnitude. This observation is in remarkable contradiction to both naive expectation and precise theoretical predictions of the Kondo model, asking for further theoretical work in order to explain our findings. Our data exclude the presence of a quantum critical valence transition in YbRh2Si2.

16.
Nanoscale ; 10(1): 277-283, 2017 Dec 21.
Article in English | MEDLINE | ID: mdl-29210429

ABSTRACT

Lanthanides (Ln) bis-phthalocyanine (Pc), the so-called LnPc2double decker, are a promising class of molecules with a well-defined magnetic anisotropy. In this work, we investigate the magnetic properties of LnPc2 molecules UHV-deposited on a graphene/Ni(111) substrate and how they modify when an Au layer is intercalated between Ni and graphene. X-ray absorption spectroscopy (XAS), and linear and magnetic circular dichroism (XLD and XMCD) were used to characterize the systems and probe the magnetic coupling between LnPc2 molecules and the Ni substrate through graphene, both gold-intercalated and not. Two types of LnPc2 molecules (Ln = Tb, Er) with a different magnetic anisotropy (easy-axis for Tb, easy-plane for Er) were considered. XMCD shows an antiferromagnetic coupling between Ln and Ni(111) even in the presence of the graphene interlayer. Au intercalation causes the vanishing of the interaction between Tb and Ni(111). In contrast, in the case of ErPc2, we found that the gold intercalation does not perturb the magnetic coupling. These results, combined with the magnetic anisotropy of the systems, suggest the possible importance of the magnetic dipolar field contribution for determining the magnetic behaviour.

17.
Proc Natl Acad Sci U S A ; 114(47): 12430-12435, 2017 11 21.
Article in English | MEDLINE | ID: mdl-29114049

ABSTRACT

Although all superconducting cuprates display charge-ordering tendencies, their low-temperature properties are distinct, impeding efforts to understand the phenomena within a single conceptual framework. While some systems exhibit stripes of charge and spin, with a locked periodicity, others host charge density waves (CDWs) without any obviously related spin order. Here we use resonant inelastic X-ray scattering to follow the evolution of charge correlations in the canonical stripe-ordered cuprate La1.875Ba0.125CuO4 across its ordering transition. We find that high-temperature charge correlations are unlocked from the wavevector of the spin correlations, signaling analogies to CDW phases in various other cuprates. This indicates that stripe order at low temperatures is stabilized by the coupling of otherwise independent charge and spin density waves, with important implications for the relation between charge and spin correlations in the cuprates.

18.
J Synchrotron Radiat ; 24(Pt 2): 531-536, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28244450

ABSTRACT

A software with a graphical user interface has been developed with the aim of facilitating the data analysis for users of a new resonant inelastic X-ray scattering (RIXS) spectrometer installed at the ESRF beamline ID32. The software is organized in modules covering all relevant steps in the data reduction from a stack of several hundred two-dimensional CCD images to a single RIXS spectrum. It utilizes both full charge integration and single-photon centroiding to cope with high-flux and high-resolution requirements. Additional modules for further data analysis and the extraction of instrumental parameters are available. The software has been in routine use for about a year now and in that time many additional features have been incorporated. It now meets the users' need for an easy-to-use data analysis tool that allows looking at and understanding data as it is acquired and thus steering users' experiments more efficiently.

19.
Sci Rep ; 6: 24254, 2016 Apr 07.
Article in English | MEDLINE | ID: mdl-27052006

ABSTRACT

Spin-polarized two-dimensional electron states (2DESs) at surfaces and interfaces of magnetically active materials attract immense interest because of the idea of exploiting fermion spins rather than charge in next generation electronics. Applying angle-resolved photoelectron spectroscopy, we show that the silicon surface of GdRh2Si2 bears two distinct 2DESs, one being a Shockley surface state, and the other a Dirac surface resonance. Both are subject to strong exchange interaction with the ordered 4f-moments lying underneath the Si-Rh-Si trilayer. The spin degeneracy of the Shockley state breaks down below ~90 K, and the splitting of the resulting subbands saturates upon cooling at values as high as ~185 meV. The spin splitting of the Dirac state becomes clearly visible around ~60 K, reaching a maximum of ~70 meV. An abrupt increase of surface magnetization at around the same temperature suggests that the Dirac state contributes significantly to the magnetic properties at the Si surface. We also show the possibility to tune the properties of 2DESs by depositing alkali metal atoms. The unique temperature-dependent ferromagnetic properties of the Si-terminated surface in GdRh2Si2 could be exploited when combined with functional adlayers deposited on top for which novel phenomena related to magnetism can be anticipated.

20.
Science ; 352(6283): 318-21, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-27081065

ABSTRACT

A permanent magnet retains a substantial fraction of its saturation magnetization in the absence of an external magnetic field. Realizing magnetic remanence in a single atom allows for storing and processing information in the smallest unit of matter. We show that individual holmium (Ho) atoms adsorbed on ultrathin MgO(100) layers on Ag(100) exhibit magnetic remanence up to a temperature of 30 kelvin and a relaxation time of 1500 seconds at 10 kelvin. This extraordinary stability is achieved by the realization of a symmetry-protected magnetic ground state and by decoupling the Ho spin from the underlying metal by a tunnel barrier.

SELECTION OF CITATIONS
SEARCH DETAIL
...