Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sci Rep ; 12(1): 15864, 2022 09 23.
Article in English | MEDLINE | ID: mdl-36151128

ABSTRACT

Sesquipedalian mud and burnt bricks (second to third century AD) were excavated from the Roman city of Romula located in the Lower Danube Region (Olt county, Romania). Along with local soils, bricks are investigated by petrographic analysis, X-ray fluorescence (XRF), X-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FT-IR), electron microscopy (SEM/EDX), X-ray microtomography (XRT), thermal analysis (DTA-TG), MÓ§ssbauer spectroscopy, magnetometry, colorimetry, and mechanical properties assessment. The results correlate well with each other, being useful for conservation/restoration purposes and as reference data for other ceramic materials. Remarkably, our analysis and comparison with literature data indicate possible control and wise optimization by the ancient brickmakers through the recipe, design (size, shape, and micro/macrostructure), and technology of the desired physical-chemical-mechanical properties. We discuss the Roman bricks as materials that can adapt to external factors, similar, to some extent, to modern "smart" or "intelligent" materials. These features can explain their outstanding durability to changes of weather/climate and mechanical load.


Subject(s)
Ceramics , Soil , Ceramics/chemistry , Microscopy, Electron, Scanning , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
2.
Nanoscale ; 14(13): 4786-4886, 2022 Mar 31.
Article in English | MEDLINE | ID: mdl-35297919

ABSTRACT

Ferrofluids investigated along for about five decades are ultrastable colloidal suspensions of magnetic nanoparticles, which manifest simultaneously fluid and magnetic properties. Their magnetically controllable and tunable feature proved to be from the beginning an extremely fertile ground for a wide range of engineering applications. More recently, biocompatible ferrofluids attracted huge interest and produced a considerable increase of the applicative potential in nanomedicine, biotechnology and environmental protection. This paper offers a brief overview of the most relevant early results and a comprehensive description of recent achievements in ferrofluid synthesis, advanced characterization, as well as the governing equations of ferrohydrodynamics, the most important interfacial phenomena and the flow properties. Finally, it provides an overview of recent advances in tunable and adaptive multifunctional materials derived from ferrofluids and a detailed presentation of the recent progress of applications in the field of sensors and actuators, ferrofluid-driven assembly and manipulation, droplet technology, including droplet generation and control, mechanical actuation, liquid computing and robotics.

3.
Soft Matter ; 18(3): 626-639, 2022 Jan 19.
Article in English | MEDLINE | ID: mdl-34931628

ABSTRACT

High magnetization Fe3O4/OA-FeCo/Al2O3 nanocomposite magnetic clusters have been obtained using a modified oil-in-water miniemulsion method. These nanocomposite clusters dispersed in a ferrofluid carrier result in a magnetorheological fluid with improved characteristics. The magnetic clusters have a magnetic core consisting of a mixture of magnetite nanoparticles of about 6 nm average size, stabilized with oleic acid (Fe3O4/OA) and FeCo/Al2O3 particles of about 50 nm average size, compactly packed in the form of spherical clusters with a diameter distribution in the range 100-300 nm and a hydrophilic coating of sodium lauryl sulphate surfactant. The surface chemical composition of the Fe3O4/OA-FeCo/Al2O3 clusters investigated by XPS indicates the presence of the Co2+ and Co3+ oxidation states of cobalt and the components of Fe2+ and Fe3+ characteristic to both an enhanced oxidation state at the surface of the FeCo particles and to the presence of magnetic nanoparticles of spinel structure which are decorating the supporting FeCo. This specific decorating morphology is also indicated by TEM images. Advanced characterization of the Fe3O4/OA-FeCo/Al2O3 magnetic clusters has been performed using Mössbauer spectroscopy and magnetization measurements at various temperatures between 6 K and 200 K. The unexpected formation of Co ferrite decorating nanoparticles was supported by Mössbauer spectroscopy. The dispersion of magnetic clusters in the ferrofluid carrier highly influences the flow properties in the absence of the field (shear thinning for low and moderate shear rates) and especially in applied magnetic field, when significant magnetoviscous effect and shear thinning was observed for the whole range of shear rate values. Detailed analysis of the magnetorheological behavior of the nanocomposite magnetic clusters dispersed in a ferrofluid carrier evidence significantly higher normalized dynamic yield stress values in comparison with the magnetite nanocluster suspensions of the same mass concentration, a promising result for this new type of nanocomposite magnetorheological fluid.

4.
Phys Chem Chem Phys ; 23(30): 16107-16127, 2021 Aug 04.
Article in English | MEDLINE | ID: mdl-34296237

ABSTRACT

Zn-Fe-O nanoparticle systems (Z3F, Z20F and Z60F) were produced by changing the Zn:Fe ratio (0.97 : 0.03, 0.8 : 0.2 and 0.4 : 0.6 in at%, respectively) in Zn(ii)-Fe(iii)-carboxylate precursors. According to X-ray diffraction, Z60F is nearly single-phase ZnFe2O4 (5.9 nm crystallite size), Z20F is a ZnO/ZnFe2O4 nanocomposite consisting of 48.8% ZnFe2O4 (4.7 nm crystallite size), and Z3F is apparently pure ZnO (9.5 nm). We found evidence for a ZnFe2O4 spinel of high inversion degree (80-100%) and with superparamagnetic (SPM) behaviour at room temperature in all three samples by a remarkable correlation between HRTEM, FTIR, XPS, Mössbauer and magnetization analyses. Iron modifies the decomposition process of the precursor and enhances its viscosity, which appears to favour the separation of Zn- and Fe-rich phases. As a consequence, two-phase systems of individual nanocrystals/nanoparticles (ZnO and ZnFe2O4) are formed. The large anisotropy constant, 106-107 erg cm-3, of the ZnFe2O4 nanoparticles and the concentration dependence of their magnetic energy barrier are explained in terms of interparticle interactions interlinked with finite size effects and high inversion degree; these factors also control the other parameters of importance for applications, including the blocking temperature (13-111 K), saturation magnetization (1.08-17.7 emu g-1 at 300 K, 4.6-44.8 emu g-1 at 5 K) and coercivity (85.4-491 Oe at 5 K). Magnetic dynamic results, particularly modelled by the Néel-Brown and Vogel-Fulcher laws, yield fitting parameters which validate the presence of concentration-dependent dipole-like interactions between ZnFe2O4 nanoparticles. A fraction of iron was found in the Fe2+ state, presumably substituting for Zn2+ in zinc oxide; however, the samples behave like ZnFe2O4 SPM nanoclusters/nanoparticles dispersed in a nonmagnetic ZnO particle assembly, rather than Zn(Fe)O dilute magnetic semiconductors. The relevance of the properties of the investigated material for specific applications is highlighted throughout the manuscript.

5.
Sci Rep ; 10(1): 17174, 2020 Oct 14.
Article in English | MEDLINE | ID: mdl-33057106

ABSTRACT

Structural and magnetic properties of Fe oxide nanoparticles prepared by laser pyrolysis and annealed in high pressure hydrogen atmosphere were investigated. The annealing treatments were performed at 200 °C (sample A200C) and 300 °C (sample A300C). The as prepared sample, A, consists of nanoparticles with ~ 4 nm mean particle size and contains C (~ 11 at.%), Fe and O. The Fe/O ratio is between γ-Fe2O3 and Fe3O4 stoichiometric ratios. A change in the oxidation state, crystallinity and particle size is evidenced for the nanoparticles in sample A200C. The Fe oxide nanoparticles are completely reduced in sample A300C to α-Fe single phase. The blocking temperature increases from 106 K in A to 110 K in A200C and above room temperature in A300C, where strong inter-particle interactions are evidenced. Magnetic parameters, of interest for applications, have been considerably varied by the specific hydrogenation treatments, in direct connection to the induced specific changes of particle size, crystallinity and phase composition. For the A and A200C samples, a field cooling dependent unidirectional anisotropy was observed especially at low temperatures, supporting the presence of nanoparticles with core-shell-like structures. Surprisingly high MS values, almost 50% higher than for bulk metallic Fe, were evidenced in sample A300C.

6.
Rev Sci Instrum ; 86(5): 053905, 2015 May.
Article in English | MEDLINE | ID: mdl-26026534

ABSTRACT

A rapid high sensitive method for determining the Faraday rotation of optical glasses is proposed. Starting from an experimental setup based on a Faraday rod coupled to a lock-in amplifier in the detection chain, two methodologies were developed for providing reliable results on samples presenting low and large Faraday rotations. The proposed methodologies were critically discussed and compared, via results obtained in transmission geometry, on a new series of aluminophosphate glasses with or without rare-earth doping ions. An example on how the method can be used for a rapid examination of the optical homogeneity of the sample with respect to magneto-optical effects is also provided.

7.
Eur Phys J E Soft Matter ; 38(6): 57, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26087918

ABSTRACT

The aim of this paper is to present a reliable procedure for the experimental determination of the specific absorption rate (SAR) in case of superparamagnetic Fe oxide nanoparticles dispersed in liquid environments. It is based on the acquisition of consecutive steps of time-temperature dependences along of both heating and cooling processes. Linear fitting of these recorded steps provides the heating and cooling speeds at different temperatures, which finally allow the determination of the heating profile in adiabatic-like conditions over a broad temperature range. The presented methodology represents on one hand, a useful alternative tool for the experimental evaluation of the heating capability of nanoparticulate systems for magnetic hyperthermia applications and on the other hand, gives support for a more accurate modeling of bio-heat transfer phenomena.


Subject(s)
Ferric Compounds/chemistry , Hot Temperature , Metal Nanoparticles/chemistry , Absorption, Physicochemical , Algorithms
8.
J Nanosci Nanotechnol ; 12(6): 5043-50, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22905574

ABSTRACT

We present the preparation, structural and magnetic properties of nanosized magnetite obtained by the crystallization of a series of Fe-containing borosilicate glasses. Several compositions with the ratio Fe2O3/SiO2 spanning from 0.37 to 0.67 were investigated as a function of two nucleators Cr2O3 and P2O5, respectively, and modifiers and intermediates (Al2O3 and MgO). Mössbauer spectroscopy revealed the degree, the type and the location of disorder induced by a specific composition and nucleators. In addition to magnetite, it was also revealed the presence of large amounts of Fe-rich paramagnetic phases. The magnetic response is analysed in relation with the amount of Fe ions which remain dispersed in the glassy matrix as noninteracting (paramagnetic) ions. We discuss the role of the nucleators on the disorder in both tetrahedral and octahedral sites of the magnetite.


Subject(s)
Crystallization/methods , Glass/chemistry , Magnetite Nanoparticles/chemistry , Magnetite Nanoparticles/ultrastructure , Macromolecular Substances/chemistry , Magnetic Fields , Materials Testing , Molecular Conformation , Particle Size , Surface Properties
9.
J Phys Condens Matter ; 23(47): 475702, 2011 Nov 30.
Article in English | MEDLINE | ID: mdl-22076071

ABSTRACT

We report on the characterization of metallurgical phases and their magnetism at the interfaces of nanoscale MgB(2)/Fe layered structures. MgB(2)/(57)Fe multilayers with varying layer thicknesses were prepared by vacuum deposition and investigated, before and after annealing by electrical resistance measurements, x-ray diffraction and (57)Fe conversion-electron Mössbauer spectroscopy (CEMS) down to 5 K. Interfacial Fe-B phases, such as Fe(2)B, were identified by CEMS. A superparamagnetic-to-ferromagnetic transition is observed with increasing (57)Fe film thickness. Ultrahigh vacuum annealing at 500 °C of the multilayers leads to strong diffusion of Fe atoms into the boundary regions of the MgB(2) layers. MgB(2) in the as-grown multilayers is non-superconducting. Structural disorder and the effect of Fe interdiffusion contribute to the suppression of superconductivity in the MgB(2) films of all the as-grown multilayers and the thinner annealed multilayers. However, an annealed MgB(2)/(57)Fe/MgB(2) trilayer with thicker (500 Å) MgB(2) layers is observed to be superconducting with an onset temperature of 25 K. At 5 K, the annealed trilayer can be conceived as being strongly chemically modulated, consisting of two partially Fe-doped superconducting MgB(2) layers separated by an interdiffused weakly magnetic Fe-B interlayer, which is characterized by a low hyperfine magnetic field B(hf) of ∼11 T. This chemically modulated layer structure of the trilayer after annealing was verified by Rutherford backscattering.

10.
J Chem Phys ; 122(12): 124703, 2005 Mar 22.
Article in English | MEDLINE | ID: mdl-15836405

ABSTRACT

The electronic structure of LaNiSn and NdNiSn compounds and their hydrides has been studied by first principles calculations and variable temperature 119Sn Mossbauer spectroscopy and the nature of the hydrogen-metal bond is discussed. The analysis of the electronic density of states (DOS) in both compounds before and after hydrogenation indicates an hybridization of the Sn, Ni, and H orbitals. The partial Sn-p DOS of LaNiSnH2 gives evidence for a lower symmetry of electron density around tin atoms compared to LaNiSn, according to the larger quadrupole splitting in the corresponding Mossbauer spectrum. Theoretical and experimental Mossbauer parameters agree very well for all samples.

SELECTION OF CITATIONS
SEARCH DETAIL
...