Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
PLoS One ; 18(9): e0286230, 2023.
Article in English | MEDLINE | ID: mdl-37676867

ABSTRACT

This study presents a novel concept for a smart home cage design, tools, and software used to monitor the physiological parameters of mice and rats in animal-based experiments. The proposed system focuses on monitoring key clinical parameters, including heart rate, respiratory rate, and body temperature, and can also assess activity and circadian rhythm. As the basis of the smart home cage system, an in-depth analysis of the requirements was performed, including camera positioning, imaging system types, resolution, frame rates, external illumination, video acquisition, data storage, and synchronization. Two different camera perspectives were considered, and specific camera models, including two near-infrared and two thermal cameras, were selected to meet the requirements. The developed specifications, hardware models, and software are freely available via GitHub. During the first testing phase, the system demonstrated the potential of extracting vital parameters such as respiratory and heart rate. This technology has the potential to reduce the need for implantable sensors while providing reliable and accurate physiological data, leading to refinement and improvement in laboratory animal care.


Subject(s)
Animal Experimentation , Rodentia , Rats , Animals , Animal Husbandry , Body Temperature , Telemetry
2.
Animals (Basel) ; 13(12)2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37370412

ABSTRACT

Animal research has always been crucial for various medical and scientific breakthroughs, providing information on disease mechanisms, genetic predisposition to diseases, and pharmacological treatment. However, the use of animals in medical research is a source of great controversy and ongoing debate in modern science. To ensure a high level of bioethics, new guidelines have been adopted by the EU, implementing the 3R principles to replace animal testing wherever possible, reduce the number of animals per experiment, and refine procedures to minimize stress and pain. Supporting these guidelines, this article proposes an improved approach for unobtrusive, continuous, and automated monitoring of the respiratory rate of laboratory rats. It uses the cyclical expansion and contraction of the rats' thorax/abdominal region to determine this physiological parameter. In contrast to previous work, the focus is on unconstrained animals, which requires the algorithms to be especially robust to motion artifacts. To test the feasibility of the proposed approach, video material of multiple rats was recorded and evaluated. High agreement was obtained between RGB imaging and the reference method (respiratory rate derived from electrocardiography), which was reflected in a relative error of 5.46%. The current work shows that camera-based technologies are promising and relevant alternatives for monitoring the respiratory rate of unconstrained rats, contributing to the development of new alternatives for a continuous and objective assessment of animal welfare, and hereby guiding the way to modern and bioethical research.

3.
Sensors (Basel) ; 22(22)2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36433452

ABSTRACT

The ability to continuously and unobtrusively monitor and classify breathing patterns can be very valuable for automated health assessments because respiration is tightly coupled to many physiological processes. Pathophysiological changes in these processes often manifest in altered breathing patterns and can thus be immediately detected. In order to develop a breathing pattern monitoring system, a study was conducted in which volunteer subjects were asked to breathe according to a predefined breathing protocol containing multiple breathing patterns while being recorded with color and thermal cameras. The recordings were used to develop and compare several respiratory signal extraction algorithms. An algorithm for the robust extraction of multiple respiratory features was developed and evaluated, capable of differentiating a wide range of respiratory patterns. These features were used to train a one vs. one multiclass support vector machine, which can distinguish between breathing patterns with an accuracy of 95.79 %. The recorded dataset was published to enable further improvement of contactless breathing pattern classification, especially for complex breathing patterns.


Subject(s)
Respiration , Respiratory Rate , Humans , Respiratory Rate/physiology , Monitoring, Physiologic/methods , Support Vector Machine , Algorithms
4.
Int J Mol Sci ; 23(22)2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36430283

ABSTRACT

Ischemia-reperfusion injury remains a fundamental problem during organ transplantation logistics. One key technical factor is the rapid allograft rewarming during the time of vascular reconstruction in the recipient. In this pilot study, a new thermal insulation bag (TIB) for organ transplantation was used. Insulation capacity, tissue compatibility, and usability were tested initially ex vivo on porcine kidneys (n = 24) followed by the first in vivo usage. Fourteen female German landrace pigs underwent kidney auto-transplantation after 24 h cold storage (4 °C). During the implantation process the kidney was either insulated with the new TIB, or it was not thermo-protected at all, which represents the clinical standard. In this proof-of-concept study, the usability (knife-to-skin-time) and the general thermal capacity (30 min warm storage at 38 °C ex vivo p < 0.001) was shown. The clinical outcome showed significant differences in the determination of CRP and pi-GST levels. Syndecan-1 Antibody staining showed clear significant higher counts in the control group (p < 0.01) indicating epithelial damage. However, the effect on renal outcomes in not severely pre-damaged kidneys does not appear to be conclusively significant. A close follow-up study is warranted, especially in the context of marginal organs or in cases where anastomosis-times are prolonged due to surgical complexity (e.g., multiple vessels and complex reconstructions).


Subject(s)
Kidney Transplantation , Organ Preservation , Female , Swine , Animals , Follow-Up Studies , Pilot Projects , Kidney/blood supply
5.
J Clin Med ; 11(1)2021 Dec 29.
Article in English | MEDLINE | ID: mdl-35011910

ABSTRACT

The number of people suffering from chronic wounds is increasing due to demographic changes and the global epidemics of obesity and diabetes. Innovative imaging techniques within the field of chronic wound diagnostics are required to improve wound care by predicting and detecting wound infections to accelerate the application of treatments. For this reason, the infection probability index (IPI) is introduced as a novel infection marker based on thermal wound imaging. To improve usability, the IPI was implemented to automate scoring. Visual and thermal image pairs of 60 wounds were acquired to test the implemented algorithms on clinical data. The proposed process consists of (1) determining various parameters of the IPI based on medical hypotheses, (2) acquiring data, (3) extracting camera distortions using camera calibration, and (4) preprocessing and (5) automating segmentation of the wound to calculate (6) the IPI. Wound segmentation is reviewed by user input, whereas the segmented area can be refined manually. Furthermore, in addition to proof of concept, IPIs' correlation with C-reactive protein (CRP) levels as a clinical infection marker was evaluated. Based on average CRP levels, the patients were clustered into two groups, on the basis of the separation value of an averaged CRP level of 100. We calculated the IPIs of the 60 wound images based on automated wound segmentation. Average runtime was less than a minute. In the group with lower average CRP, a correlation between IPI and CRP was evident.

6.
PLoS One ; 14(11): e0224747, 2019.
Article in English | MEDLINE | ID: mdl-31693688

ABSTRACT

Pig experiments have played an important role in medical breakthroughs during the last century. In fact, pigs are one of the major animal species used in translational research, surgical models and procedural training due to their anatomical and physiological similarities to humans. To ensure high bioethical standards in animal trials, new directives have been implemented, among others, to refine the procedures and minimize animals' stress and pain. This paper presents a contactless motion-based approach for monitoring cardiorespiratory signals (heart rate and respiratory rate) in anesthetized pigs using infrared thermography. Heart rate monitoring is estimated by measuring the vibrations (precordial motion) of the chest caused by the heartbeat. Respiratory rate, in turn, is computed by measuring the mechanical chest movements that accompany the respiratory cycle. To test the feasibility of this approach, thermal videos of 17 anesthetized pigs were acquired and analyzed. A high agreement between infrared thermography and a gold standard (electrocardiography and capnography-derived respiratory rate) was achieved. The mean absolute error averaged 3.43 ± 3.05 bpm and 0.27 ± 0.48 breaths/min for heart rate and respiratory rate, respectively. In sum, infrared thermography is capable of assessing cardiorespiratory signals in pigs. Future work should be conducted to evaluate infared thermography capability of capturing information for long term monitoring of research animals in a diverse set of facilities.


Subject(s)
Heart Rate/physiology , Monitoring, Physiologic/methods , Respiratory Rate/physiology , Thermography/methods , Animal Experimentation/ethics , Animal Welfare/ethics , Animals , Feasibility Studies , Infrared Rays , Models, Animal , Monitoring, Physiologic/ethics , Monitoring, Physiologic/instrumentation , Signal Processing, Computer-Assisted , Swine/physiology , Thermography/ethics , Thermography/instrumentation
7.
Biomed Opt Express ; 10(9): 4422-4436, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31565499

ABSTRACT

Laboratory animal research was always crucial for scientific breakthroughs in the fields of medicine and biology. Animal trials offer insights into various disease mechanisms, genetics, drug therapy and the effect of different external factors onto living organisms. However, conducting animal trials is highly controversial. To ensure high ethical standards, a number of directives have been adopted in the European Union, which seek to replace, reduce and refine animal trials. Hence, severity assessment plays an important role in today's laboratory animal research. Currently, severity of trials is assessed by highly rater dependent scoring systems. In this paper, we propose a method for unobtrusive, automated and contactless measurement of respiratory rate (RR) and heart rate (HR). We were able to extract RR and HR with an high agreement between our method and a contact-based reference method. The Root Mean Squared Error (RMSE) averaged 0.32 ± 0.11 breaths/min for RR and 1.28 ± 0.62 beats/min for HR in rats, respectively. In mice, the RMSE averaged 1.42 ± 0.97 breaths/min for RR and 1.36 ± 0.87 beats/min, respectively. In the future, these parameters can be used for new, objective scoring systems, which are not susceptible to inter-rater variability.

8.
J Biomed Opt ; 24(7): 1-11, 2019 07.
Article in English | MEDLINE | ID: mdl-31286726

ABSTRACT

To refine animal research, vital signs, activity, stress, and pain must be monitored. In chronic studies, some measures can be assessed using telemetry sensors. Although this methodology provides high-precision data, an initial surgery for device implantation is necessary, potentially leading to stress, wound infections, and restriction of motion. Recently, camera systems have been adapted for animal research. We give an overview of parameters that can be assessed using imaging in the visible, near-infrared, and thermal spectrum of light. It focuses on heart activity, respiration, oxygen saturation, and motion, as well as on wound analysis. For each parameter, we offer recommendations on the minimum technical requirements of appropriate systems, regions of interest, and light conditions, among others. In general, these systems demonstrate great performance. For heart and respiratory rate, the error was <4 beats / min and 5 breaths/min. Furthermore, the systems are capable of tracking animals during different behavioral tasks. Finally, studies indicate that inhomogeneous temperature distribution around wounds might be an indicator of (pending) infections. In sum, camera-based techniques have several applications in animal research. As vital parameters are currently only assessed in sedated animals, the next step should be the integration of these modalities in home-cage monitoring.


Subject(s)
Monitoring, Physiologic , Optical Imaging , Video Recording , Animals , Heart Rate/physiology , Laboratory Animal Science , Mice , Movement/physiology , Oxygen/blood , Rats , Thermography , Wound Healing/physiology
9.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 6077-6080, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31947231

ABSTRACT

Laboratory animal science plays a crucial role in medical and biological research. In the last decades, stricter regulations were enforced to safeguard laboratory animals. Following the "3Rs" guiding principles, animal trials should be replaced, reduced and refined, whenever possible.A contactless modality capable of assessing the respiratory rate (RR) and additional breath related characteristics can potentially refine anesthetic interventions in rodents by continuously monitoring their anesthetic depth. This can reduce complications and thus the number of needed animals.We were able to extract the instantaneous RR in rodents with a sum squared error (SSE) of 0.26 breaths/min from color video. A correlation of 0.9781 compared to an Electrocardiography (ECG) based reference was achieved. Furthermore, additional temporal and morphological characteristics were extracted, which are sensitive for changes in the anesthetic depth.


Subject(s)
Respiration , Anesthesia , Animals , Electrocardiography , Respiratory Rate , Rodentia
10.
Sensors (Basel) ; 18(11)2018 Oct 28.
Article in English | MEDLINE | ID: mdl-30373282

ABSTRACT

Animal research has always played a crucial role in various medical and scientific breakthroughs. They offer, inter alia, insights into diseases mechanisms, genetic predisposition to a disease, and drug therapy. However, the use of animals for medical research is a cause of major controversies and debates in modern science. To warrant high bioethical standards, new directives have been being adopted to replace animal research whenever possible, to reduce the number of animals, and to refine the procedures to minimize stress and pain. Here, we present two new approaches, based on thermal imaging (a remote and passive technology), to assess respiratory rate (RR) as well as exploratory behavior and general activity in rodents. In animal research, these parameters are gold standards for welfare assessment. The approaches were validated in a study conducted with both rats and mice. To test the feasibility of our algorithm to estimate RR, thermal videos from anesthetized rodents were acquired. The capability of the second approach to monitor activity was tested with videos of Open Field tests. Regarding RR, a high agreement between thermal imaging and gold standard (electrocardiography-derived RR) was achieved. The mean relative error averaged 0.50 ± 0.15 breaths/min and 4.55 ± 2.94 breaths/min for rats and mice, respectively. The second approach was capable of monitoring and tracking the activity of the rodents very well. This paper demonstrates that thermal imaging is a promising and relevant alternative for monitoring of RR and activity in rodents, thus contributing to the remote assessment of animal welfare.


Subject(s)
Monitoring, Physiologic/methods , Remote Sensing Technology/methods , Thermography/methods , Algorithms , Animals , Behavior, Animal , Mice , Rats , Respiratory Rate , Time Factors , Video Recording
SELECTION OF CITATIONS
SEARCH DETAIL
...