Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Cancer Discov ; 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38900051

ABSTRACT

Multiple factors in the design of a chimeric antigen receptor (CAR) influence CAR T-cell activity, with costimulatory signals being a key component. Yet, the impact of costimulatory domains on the downstream signaling and subsequent functionality of CAR-engineered natural killer (NK) cells remains largely unexplored. Here, we evaluated the impact of various costimulatory domains on CAR-NK cell activity, using a CD70-targeting CAR. We found that CD28, a costimulatory molecule not inherently present in mature NK cells, significantly enhanced the antitumor efficacy and long-term cytotoxicity of CAR-NK cells both in vitro and in multiple xenograft models of hematologic and solid tumors. Mechanistically, we showed that CD28 linked to CD3Z creates a platform that recruits critical kinases, such as LCK and ZAP70, initiating a signaling cascade that enhances CAR-NK cell function. Our study provides insights into how CD28 costimulation enhances CAR-NK cell function and supports its incorporation in NK-based CARs for cancer immunotherapy.

2.
J Thorac Oncol ; 16(11): 1821-1839, 2021 11.
Article in English | MEDLINE | ID: mdl-34274504

ABSTRACT

INTRODUCTION: Coronavirus disease 2019 is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which enters host cells through the cell surface proteins ACE2 and TMPRSS2. METHODS: Using a variety of normal and malignant models and tissues from the aerodigestive and respiratory tracts, we investigated the expression and regulation of ACE2 and TMPRSS2. RESULTS: We find that ACE2 expression is restricted to a select population of epithelial cells. Notably, infection with SARS-CoV-2 in cancer cell lines, bronchial organoids, and patient nasal epithelium induces metabolic and transcriptional changes consistent with epithelial-to-mesenchymal transition (EMT), including up-regulation of ZEB1 and AXL, resulting in an increased EMT score. In addition, a transcriptional loss of genes associated with tight junction function occurs with SARS-CoV-2 infection. The SARS-CoV-2 receptor, ACE2, is repressed by EMT through the transforming growth factor-ß, ZEB1 overexpression, and onset of EGFR tyrosine kinase inhibitor resistance. This suggests a novel model of SARS-CoV-2 pathogenesis in which infected cells shift toward an increasingly mesenchymal state, associated with a loss of tight junction components with acute respiratory distress syndrome-protective effects. AXL inhibition and ZEB1 reduction, as with bemcentinib, offer a potential strategy to reverse this effect. CONCLUSIONS: These observations highlight the use of aerodigestive and, especially, lung cancer model systems in exploring the pathogenesis of SARS-CoV-2 and other respiratory viruses and offer important insights into the potential mechanisms underlying the morbidity and mortality of coronavirus disease 2019 in healthy patients and patients with cancer alike.


Subject(s)
COVID-19 , Lung Neoplasms , Bronchi , Humans , Lung , Peptidyl-Dipeptidase A , SARS-CoV-2
3.
Sci Rep ; 11(1): 7676, 2021 04 07.
Article in English | MEDLINE | ID: mdl-33828163

ABSTRACT

IL-2 is the master-regulator cytokine for T cell dependent responses and is crucial for proliferation and survival of T cells. However, IL-2-based treatments remained marginal, in part due to short half-life. Thus, we aimed to extend IL-2 half-life by flanking the IL-2 core with sequences derived from the extensively glycosylated hinge region of the NCR2 receptor. We termed this modified IL-2: "S2A". Importantly, S2A blood half-life was extended 14-fold compared to the clinical grade IL-2, Proleukin. Low doses inoculation of S2A significantly enhanced induction of Tregs (CD4+ Regulatory T cells) in vivo, as compared to Proleukin, while both S2A and Proleukin induced low levels of CD8+ T cells. In a B16 metastatic melanoma model, S2A treatment was unable to reduce the metastatic capacity of B16 melanoma, while enhancing induction and recruitment of Tregs, compared to Proleukin. Conversely, in two autoimmune models, rheumatoid arthritis and DSS-induced colitis, S2A treatment significantly reduced the progression of disease compared to Proleukin. Our results suggest new avenues for generating long-acting IL-2 for long-standing treatment and a new technique for manipulating short-life proteins for clinical and research uses.


Subject(s)
Autoimmunity/drug effects , Interleukin-2/analogs & derivatives , Natural Cytotoxicity Triggering Receptor 2/chemistry , T-Lymphocytes, Regulatory/drug effects , Animals , Arthritis, Rheumatoid/prevention & control , Delayed-Action Preparations , Drug Evaluation, Preclinical , Glycosylation , Half-Life , Interleukin-2/administration & dosage , Interleukin-2/pharmacokinetics , Mice, Inbred C57BL , Mice, Knockout
4.
Commun Biol ; 4(1): 143, 2021 01 29.
Article in English | MEDLINE | ID: mdl-33514819

ABSTRACT

Harnessing the immune-system to eradicate cancer is becoming a reality in recent years. Engineered immune cells, such as chimeric antigen receptor (CAR) T cells, are facing the danger of an overt life-threatening immune response due to the ON-target OFF-tumor cytotoxicity and Cytokine Release Syndrome. We therefore developed synthetic promoters for regulation of gene expression under the control of inflammation and Hypoxia-induced signals that are associated with the tumor microenvironment (TME). We termed this methodology as chimeric-antigen-receptor-tumor-induced-vector (CARTIV). For proof of concept, we studied synthetic promoters based on promoter-responsive elements (PREs) of IFNγ, TNFα and hypoxia; triple PRE-based CARTIV promoter manifested a synergistic activity in cell-lines and potent activation in human primary T-cells. CARTIV platform can improve safety of CAR T-cells or other engineered immune-cells, providing TME-focused activity and opening a therapeutic window for many tumor-associated antigens that are also expressed by non-tumor healthy tissues.


Subject(s)
Breast Neoplasms/therapy , Immunotherapy, Adoptive , Promoter Regions, Genetic , Receptors, Chimeric Antigen/genetics , T-Lymphocytes/transplantation , Tumor Microenvironment , Animals , Breast Neoplasms/genetics , Breast Neoplasms/immunology , Breast Neoplasms/metabolism , Cell Line, Tumor , Female , Gene Expression Regulation, Neoplastic , HEK293 Cells , Humans , Interferon-gamma/genetics , Interferon-gamma/pharmacology , Kinetics , Mice, Inbred NOD , NF-kappa B/genetics , Proof of Concept Study , Receptors, Chimeric Antigen/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Tumor Hypoxia , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/pharmacology , Xenograft Model Antitumor Assays
5.
Transl Lung Cancer Res ; 10(11): 4095-4105, 2021 Nov.
Article in English | MEDLINE | ID: mdl-35004241

ABSTRACT

BACKGROUND: Lurbinectedin recently received FDA accelerated approval as a second line treatment option for metastatic small cell lung cancer (SCLC). However, there are currently no established biomarkers to predict SCLC sensitivity or resistance to lurbinectedin or preclinical studies to guide rational combinations. METHODS: Drug sensitivity was assayed in proliferation assays and xenograft models. Baseline proteomic profiling was performed by reverse-phase protein array. Lurbinectedin-induced changes in intracellular signaling pathways were assayed by Western blot. RESULTS: Among 21 human SCLC cell lines, cytotoxicity was observed following lurbinectedin treatment at a low dose (median IC50 0.46 nM, range, 0.06-1.83 nM). Notably, cell lines with high expression of Schlafen-11 (SLFN11) protein, a promising biomarker of response to other DNA damaging agents (e.g., chemotherapy, PARP inhibitors), were more sensitive to single-agent lurbinectedin (FC =3.2, P=0.005). SLFN11 was validated as a biomarker of sensitivity to lurbinectedin using siRNA knockdown and in xenografts representing SLFN11 high and low SCLC. Replication stress and DNA damage markers (e.g., γH2AX, phosphorylated CHK1, phosphorylated RPA32) increased in SCLC cell lines following treatment with lurbinectedin. Lurbinectedin also induced PD-L1 expression via cGAS-STING pathway activation. Finally, the combination of lurbinectedin with the ataxia telangiectasia and Rad3-related protein (ATR) inhibitors ceralasertib and berzosertib showed a greater than additive effect in SLFN11-low models. CONCLUSIONS: Together our data confirm the activity of lurbinectedin across a large cohort of SCLC models and identify SLFN11 as a top candidate biomarker for lurbinectedin sensitivity. In SLFN11-low SCLC cell lines which are relatively resistance to lurbinectedin, the addition of an ATR inhibitor to lurbinectedin re-sensitized otherwise resistant cells, confirming previous observations that SLFN11 is a master regulator of DNA damage response independent of ATR, and the absence of SLFN11 leads to synthetic lethality with ATR inhibition. This study provides a rationale for lurbinectedin in combination with ATR inhibitors to overcome resistance in SCLC with low SLFN11 expression.

6.
bioRxiv ; 2021 Jan 28.
Article in English | MEDLINE | ID: mdl-32577652

ABSTRACT

COVID-19 is an infectious disease caused by SARS-CoV-2, which enters host cells via the cell surface proteins ACE2 and TMPRSS2. Using a variety of normal and malignant models and tissues from the aerodigestive and respiratory tracts, we investigated the expression and regulation of ACE2 and TMPRSS2. We find that ACE2 expression is restricted to a select population of highly epithelial cells. Notably, infection with SARS-CoV-2 in cancer cell lines, bronchial organoids, and patient nasal epithelium, induces metabolic and transcriptional changes consistent with epithelial to mesenchymal transition (EMT), including upregulation of ZEB1 and AXL, resulting in an increased EMT score. Additionally, a transcriptional loss of genes associated with tight junction function occurs with SARS-CoV-2 infection. The SARS-CoV-2 receptor, ACE2, is repressed by EMT via TGFbeta, ZEB1 overexpression and onset of EGFR TKI inhibitor resistance. This suggests a novel model of SARS-CoV-2 pathogenesis in which infected cells shift toward an increasingly mesenchymal state, associated with a loss of tight junction components with acute respiratory distress syndrome-protective effects. AXL-inhibition and ZEB1-reduction, as with bemcentinib, offers a potential strategy to reverse this effect. These observations highlight the utility of aerodigestive and, especially, lung cancer model systems in exploring the pathogenesis of SARS-CoV-2 and other respiratory viruses, and offer important insights into the potential mechanisms underlying the morbidity and mortality of COVID-19 in healthy patients and cancer patients alike.

7.
Article in English | MEDLINE | ID: mdl-32211339

ABSTRACT

The Ebola Virus (EBOV) glycoprotein (GP) sterically shields cell-membrane ligands to immune receptors such as human leukocyte antigen class-1 (HLA-I) and MHC class I polypeptide-related sequence A (MICA), thus mediating immunity evasion. It was suggested that the abundant N-glycosylation of the EBOV-GP is involved in this steric shielding. We aimed to characterize (i) the GP N-glycosylation sites contributing to the shielding, and (ii) the effect of mutating these sites on immune subversion by the EBOV-GP. The two highly glycosylated domains of GP are the mucin-like domain (MLD) and the glycan cap domain (GCD) with three and six N-glycosylation sites, respectively. We mutated the N-glycosylation sites either in MLD or in GCD or in both domains. We showed that the glycosylation sites in both the MLD and GCD domains contribute to the steric shielding. This was shown for the steric shielding of either HLA-I or MICA. We then employed the fluorescence resonance energy transfer (FRET) method to measure the effect of N-glycosylation site removal on the distance in the cell membrane between the EBOV-GP and HLA-I (HLA.A*0201 allele). We recorded high FRET values for the interaction of CFP-fused HLA.A*0201 and YFP-fused EBOV-GP, demonstrating the very close distance (<10 nm) between these two proteins on the cell membrane of GP-expressing cells. The co-localization of HLA-I and Ebola GP was unaffected by the disruption of steric shielding, as the removal of N-glycosylation sites on Ebola GP revealed similar FRET values with HLA-I. However, these mutations directed to N-glycosylation sites had restored immune cell function otherwise impaired due to steric shielding over immune cell ligands by WT Ebola GP. Overall, we showed that the GP-mediated steric shielding aimed to impair immune function is facilitated by the N-glycans protruding from its MLD and GCD domains, but these N-glycans are not controlling the close distance between GP and its shielded proteins.


Subject(s)
Ebolavirus , Hemorrhagic Fever, Ebola , Humans , Immune Evasion , Ligands , Polysaccharides , Viral Envelope Proteins/genetics
8.
Cancer Immunol Res ; 7(7): 1120-1134, 2019 07.
Article in English | MEDLINE | ID: mdl-31164357

ABSTRACT

mAb-based blocking of the immune checkpoints involving the CTLA4-B7 and PD1-PDL1 inhibitory axes enhance T-cell-based adaptive immune responses in patients with cancer. We show here that antitumor responses by natural killer (NK) cells can be enhanced by a checkpoint-blocking mAb, 14-25-9, which we developed against proliferating cell nuclear antigen (PCNA). PCNA is expressed on the surface of cancer cells and acts as an inhibitory ligand for the NK-cell receptor, NKp44-isoform1. We tested for cytoplasmic- and membrane-associated PCNA by FACS- and ImageStream-based staining of cell lines and IHC of human cancer formalin fixed, paraffin embedded tissues. The mAb, 14-25-9, inhibited binding of chimeric NKp44 receptor to PCNA and mostly stained the cytoplasm and membrane of tumor cells, whereas commercial antibody (clone PC10) stained nuclear PCNA. NK functions were measured using ELISA-based IFNγ secretion assays and FACS-based killing assays. The NK92-NKp44-1 cell line and primary human NK cells showed increased IFNγ release upon coincubation with mAb 14-25-9 and various solid tumor cell lines and leukemias. Treatment with 14-25-9 also increased NK cytotoxic activity. In vivo efficacy was evaluated on patient-derived xenografts (PDX)-bearing NSG mice. In PDX-bearing mice, intravenous administration of mAb 14-25-9 increased degranulation (CD107a expression) of intratumorally injected patient autologous or allogeneic NK cells, as well as inhibited tumor growth when treated long term. Our study describes a mAb against the NKp44-PCNA innate immune checkpoint that can enhance NK-cell antitumor activity both in vitro and in vivo.


Subject(s)
Antibodies, Monoclonal/pharmacology , Cytotoxicity, Immunologic/immunology , Head and Neck Neoplasms/drug therapy , Killer Cells, Natural/drug effects , Natural Cytotoxicity Triggering Receptor 2/antagonists & inhibitors , Proliferating Cell Nuclear Antigen/chemistry , Squamous Cell Carcinoma of Head and Neck/drug therapy , Animals , Apoptosis , Cell Proliferation , Cytotoxicity, Immunologic/drug effects , Head and Neck Neoplasms/immunology , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/pathology , Humans , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, SCID , Natural Cytotoxicity Triggering Receptor 2/immunology , Proliferating Cell Nuclear Antigen/immunology , Squamous Cell Carcinoma of Head and Neck/immunology , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/pathology , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
9.
Front Oncol ; 9: 17, 2019.
Article in English | MEDLINE | ID: mdl-30723707

ABSTRACT

Despite of remarkable progress made in the head and neck cancer (HNC) therapy, the survival rate of this metastatic disease remain low. Tailoring the appropriate therapy to patients is a major challenge and highlights the unmet need to have a good preclinical model that will predict clinical response. Hence, we developed an accurate and time efficient drug screening method of tumor ex vivo analysis (TEVA) system, which can predict patient-specific drug responses. In this study, we generated six patient derived xenografts (PDXs) which were utilized for TEVA. Briefly, PDXs were cut into 2 × 2 × 2 mm3 explants and treated with clinically relevant drugs for 24 h. Tumor cell proliferation and death were evaluated by immunohistochemistry and TEVA score was calculated. Ex vivo and in vivo drug efficacy studies were performed on four PDXs and three drugs side-by-side to explore correlation between TEVA and PDX treatment in vivo. Efficacy of drug combinations was also ventured. Optimization of the culture timings dictated 24 h to be the time frame to detect drug responses and drug penetrates 2 × 2 × 2 mm3 explants as signaling pathways were significantly altered. Tumor responses to drugs in TEVA, significantly corresponds with the drug efficacy in mice. Overall, this low cost, robust, relatively simple and efficient 3D tissue-based method, employing material from one PDX, can bypass the necessity of drug validation in immune-incompetent PDX-bearing mice. Our data provides a potential rationale for utilizing TEVA to predict tumor response to targeted and chemo therapies when multiple targets are proposed.

10.
Front Immunol ; 9: 1114, 2018.
Article in English | MEDLINE | ID: mdl-29875773

ABSTRACT

Proliferating cell nuclear antigen (PCNA) is considered as a hub protein and is a key regulator of DNA replication, repair, cell cycle control, and apoptosis. PCNA is overexpressed in many cancer types, and PCNA overexpression is correlated with cancer virulence. Membrane-associated PCNA is a ligand for the NKp44 (NCR2) innate immune receptor. The purpose of this study was to characterize the PCNA-binding site within NKp44. We have identified NKp44-derived linear peptide (pep8), which can specifically interact with PCNA and partly block the NKp44-PCNA interaction. We then tested whether NKp44-derived pep8 (NKp44-pep8) fused to cell-penetrating peptides (CPPs) can be employed for targeting the intracellular PCNA for the purpose of anticancer therapy. Treatment of tumor cells with NKp44-pep8, fused to R11-NLS cell-penetrating peptide (R11-NLS-pep8), reduced cell viability and promoted cell death, in various murine and human cancer cell lines. Administration of R11-NLS-pep8 to tumor-bearing mice suppressed tumor growth in the 4T1 breast cancer and the B16 melanoma in vivo models. We therefore identified the NKp44 binding site to PCNA and further developed an NKp44-peptide-based agent that can inhibit tumor growth through interfering with the function of intracellular PCNA in the tumor cell.


Subject(s)
Cell-Penetrating Peptides/metabolism , Natural Cytotoxicity Triggering Receptor 2/metabolism , Neoplasms/metabolism , Proliferating Cell Nuclear Antigen/metabolism , Protein Interaction Domains and Motifs , Animals , Apoptosis , Cell Line, Tumor , Cell Survival , Cell-Penetrating Peptides/chemistry , Female , Humans , Immunophenotyping , Male , Mice , Natural Cytotoxicity Triggering Receptor 2/chemistry , Proliferating Cell Nuclear Antigen/chemistry , Protein Binding , Recombinant Fusion Proteins , Surface Plasmon Resonance
11.
Cancer Immunol Immunother ; 67(12): 1871-1883, 2018 Dec.
Article in English | MEDLINE | ID: mdl-29264698

ABSTRACT

The natural cytotoxicity receptors (NCRs; NKp30, NKp44, and NKp46) were first defined as activating receptors on human NK cells that are important in recognition of and response to tumors. A flurry of recent research, however, has revealed that differential splicing can occur during transcription of each of the NCR genes, resulting in some transcripts that encode receptor isoforms with inhibitory functions. These alternative transcripts can arise in certain tissue microenvironments and appear to be induced by cytokines. Evidence indicates that some of the inhibitory NCRs are triggered by specific ligands, such as the interaction of the inhibitory isoform of NKp44 with PCNA on the surface of tumor cells. Here, we review the different NCR splice variants, cytokines that modulate their expression, their functional impacts on innate immune cells, and their differential expression in the contexts of cancer, pregnancy, and infections. The recent discovery of these inhibitory NCR isoforms has revealed novel innate immune checkpoints, many of which still lack defined ligands and clear mechanisms driving their expression. These NCR checkpoint pathways offer exciting potential therapeutic targets to manipulate innate immune functions under defined pathological conditions, such as cancer, pregnancy disorders, and pathogen exposure.


Subject(s)
Alternative Splicing , Cytotoxicity, Immunologic/genetics , Immunity, Innate/genetics , Receptors, Immunologic/genetics , Animals , Cellular Microenvironment/genetics , Cellular Microenvironment/immunology , Gene Expression Profiling , Gene Expression Regulation , Humans , Immunity, Innate/drug effects , Receptors, Immunologic/metabolism
12.
Front Immunol ; 8: 161, 2017.
Article in English | MEDLINE | ID: mdl-28261217

ABSTRACT

The natural killer (NK) cell activating receptor NKp46/NCR1 plays a critical role in elimination of virus-infected and tumor cells. The NCR1 gene can be transcribed into five different splice variants, but the functional importance and physiological distribution of NKp46 isoforms are not yet fully understood. Here, we shed light on differential expression of NKp46 splice variants in viral respiratory tract infections and their functional difference at the cellular level. NKp46 was the most predominantly expressed natural cytotoxicity receptor in the nasal lavage of patients infected with four respiratory viruses: respiratory syncytia virus, adenovirus, human metapneumovirus, or influenza A. Expression of NKp30 was far lower and NKp44 was absent in all patients. Domain 1-negative NKp46 splice variants (i.e., NKp46 isoform d) were the predominantly expressed isoform in nasal lavage following viral infections. Using our unique anti-NKp46 mAb, D2-9A5, which recognizes the D2 extracellular domain, and a commercial anti-NKp46 mAb, 9E2, which recognizes D1 domain, allowed us to identify a small subset of NKp46 D1-negative splice variant-expressing cells within cultured human primary NK cells. This NKp46 D1-negative subset also showed higher degranulation efficiency in term of CD107a surface expression. NK-92 cell lines expressing NKp46 D1-negative and NKp46 D1-positive splice variants also showed functional differences when interacting with targets. A NKp46 D1-negative isoform-expressing NK-92 cell line showed enhanced degranulation activity. To our knowledge, we provide the first evidence showing the physiological distribution and functional importance of human NKp46 splice variants under pathological conditions.

13.
J Neuroimmunol ; 288: 102-13, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-26531702

ABSTRACT

Stress leads to immune malfunction and increased susceptibility to infection resulting in impaired cognitive behavior and depression. Working with an animal model of Staphylococcus aureus infection and restraint stress we demonstrated impaired immune response and altered behavior against the S. aureus infection after exposure to acute or chronic restraint stress. This enhanced the resistance of mice to S. aureus infection via inhibiting the production of pro-inflammatory cytokines, free radicals, and upregulating corticosterone and anti-inflammatory cytokine production, resulting in altered exploratory behavior, compared to non-stressed infected group (P<0.05), thereby helping the animals to recover from depressive-like symptoms due to stress.


Subject(s)
Behavior, Animal/physiology , Staphylococcal Infections/immunology , Stress, Psychological/immunology , Animals , Corticosterone/blood , Cytokines/biosynthesis , Cytokines/immunology , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Male , Mice , Mice, Inbred BALB C , Restraint, Physical , Staphylococcus aureus , Stress, Psychological/metabolism
14.
Neurobiol Dis ; 69: 235-47, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24909816

ABSTRACT

Toll-like receptor 7 (TLR7) known to recognize guanidine-rich ssRNA has been shown to mount vital host defense mechanism against many viruses including flaviviruses. Signal transduction through TLR7 has been shown to produce type-1 interferon and proinflammatory mediators, thereby initiating essential innate immune response against ssRNA viruses in hosts. Systemic and brain specific TLR7 knock-down mice (TLR7(KD)) were generated using vivo-morpholinos. These mice were then subcutaneously challenged with lethal dose of JEV (GP78 strain) and were subsequently analyzed for survival. Significant difference in susceptibility to JEV between wild-type and systemic TLR7(KD) mice was observed whereas, no difference in susceptibility to JEV infection was seen in brain-specific TLR7(KD) mice. Significant decreases in IFN-α and antiviral proteins were also observed in both TLR7(KD) mice along with increased viral loads in their brain. Owing to increased viral load, increases in levels of various proinflammatory cyto/chemokines, increased microglial activation and infiltration of peripheral immune cells in brain of TLR7(KD) mice were also observed. Immunocytochemistry and RNA co-immunoprecipitation performed with JEV-infected N2a or HT22 cells indicated endosomal localization and confirmed interaction between JEV ssRNA with TLR7. Treatment of mice with imiquimod, a TLR7 agonist, prior to JEV infection resulted in their increased survival. Overall, our results suggest that the TLR7 response following JEV infection promotes type-1 interferon production and generation of antiviral state which might contribute to protective effect in systemic infection.


Subject(s)
Encephalitis, Japanese/immunology , Immunity, Innate , Membrane Glycoproteins/metabolism , Toll-Like Receptor 7/metabolism , Adjuvants, Immunologic/pharmacology , Aminoquinolines/pharmacology , Animals , Brain/immunology , Brain/virology , Cell Line , Cell Line, Tumor , Cells, Cultured , DNA, Viral/metabolism , Disease Models, Animal , Encephalitis Virus, Japanese/genetics , Encephalitis, Japanese/prevention & control , Encephalitis, Japanese/virology , Gene Knockdown Techniques , Humans , Imiquimod , Interferon Type I/metabolism , Membrane Glycoproteins/agonists , Membrane Glycoproteins/genetics , Mice, Inbred BALB C , Mice, Transgenic , Microglia/physiology , Neurons/immunology , Toll-Like Receptor 7/agonists , Toll-Like Receptor 7/genetics
15.
Viral Immunol ; 27(2): 48-59, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24605788

ABSTRACT

An immune role of neural stem/progenitor cells (NSPCs) has been proposed in many recent studies; however much still remains to be elucidated. In the current investigation, we report that NSPCs possess the ability to convert encephalitogenic T cells into CD4(+)-CD25(+)-FOXP3(+) regulatory T cells (T(reg)). Encephalitogenic and nonencephalitogenic T cells isolated from sham and Japanese encephalitis virus (JEV) infected animals were co-cultured with mouse NSPCs. Post co-culture, significant increase in the number of T(regs) was observed from encephalitogenic T cells co-cultured with NSPCs. This increased conversion was found to be dependent on direct contact between T cells and NSPCs. Neutralization of TGF-ß and IFN-γ in NSPC cultures abrogated this increased conversion of encephalitogenic T cells into T(regs). Flow cytometric, quantitative RT-PCR, and immunoblot analysis of both T cells and NSPCs revealed surface and intracellular changes post co-culture. Co-stimulatory molecules (B7) and ICAM-1 were increased on NSPCs post co-culture; levels of TGFß, IFNγ, and TGFßR1 were also increased in NSPCs. This study provides a basic insight into the interaction between CNS-infiltrating encephalitogenic T cells and NSPCs during viral encephalitis. Conversion of encephalitogenic T cells into CD4(+)-CD25(+)-FOXP3(+) T(regs) through interaction with NSPCs indicates an attempt in regulation of excessive inflammation in the CNS.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Encephalitis Virus, Japanese/immunology , Encephalitis, Arbovirus/immunology , Flavivirus Infections/immunology , Neural Stem Cells/immunology , T-Lymphocytes, Regulatory/immunology , Animals , CD4-Positive T-Lymphocytes/chemistry , Cells, Cultured , Coculture Techniques , Flow Cytometry , Forkhead Transcription Factors/analysis , Immunoblotting , Interleukin-2 Receptor alpha Subunit/analysis , Mice , Mice, Inbred BALB C , Real-Time Polymerase Chain Reaction , T-Lymphocytes, Regulatory/chemistry
16.
J Virol ; 88(9): 4798-810, 2014 May.
Article in English | MEDLINE | ID: mdl-24522920

ABSTRACT

UNLABELLED: MicroRNAs (miRNAs) are single-stranded small RNA molecules that regulate various cellular processes. miRNA 155 (miR-155) regulates various aspects of innate and adaptive immune responses and plays a key role in various viral infections and the resulting neuroinflammation. The present study evaluated the involvement of miR-155 in modulating Japanese encephalitis virus (JEV)-induced neuroinflammation. We observed that miR-155 expression was upregulated during JEV infection of mouse primary microglia, the BV-2 microglia cell line, and in both mouse and human brains. In vitro and in vivo knockdown of miR-155 minimized JEV-induced inflammatory responses. In the present study, we confirmed targeting of the Src homology 2-containing inositol phosphatase 1 (SHIP1) 3' untranslated region (UTR) by miR-155 in the context of JEV infection. Inhibition of SHIP1 by miR-155 resulted in higher beta interferon (IFN-ß) and proinflammatory cytokine production through activation of TANK-binding kinase 1 (TBK-1). Based on these observations, we conclude that miR-155 modulates the neuroinflammatory response during JEV infection via negative regulation of SHIP1 expression. Thus, modulation of miR-155 could be a novel strategy to regulate JEV-induced neuroinflammation. IMPORTANCE: Japanese encephalitis virus (JEV), a member of the family Flaviviridae that causes Japanese encephalitis (JE), is the most common mosquito-borne encephalitis virus in the Asia-Pacific region. The disease is feared, as currently there are no specific antiviral drugs available. JEV targets the central nervous system, leading to high mortality and neurological and psychiatric sequelae in some of those who survive. The level of inflammation correlates well with the clinical outcome in patients. Recently, microRNA (miRNA), a single-stranded noncoding RNA, has been implicated in various brain disorders. The present study investigates the role of miRNA in JEV-induced neuroinflammation. Our results show that miRNA 155 (miR-155) targets the Src homology 2-containing inositol phosphatase 1 (SHIP1) protein and promotes inflammation by regulating the NF-κB pathway, increasing the expression of various proinflammatory cytokines and the antiviral response. Thus, miR-155 is a potential therapeutic target to develop antivirals in JE and other brain disorders where inflammation plays a significant role in disease progression.


Subject(s)
Encephalitis Virus, Japanese/immunology , Encephalitis, Japanese/immunology , Encephalitis, Japanese/pathology , Host-Pathogen Interactions , MicroRNAs/metabolism , Phosphoric Monoester Hydrolases/biosynthesis , Animals , Brain/pathology , Cells, Cultured , Disease Models, Animal , Gene Expression Profiling , Gene Knockdown Techniques , Humans , Inositol Polyphosphate 5-Phosphatases , Mice , Mice, Inbred BALB C , Microglia/immunology , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases
17.
J Inflamm (Lond) ; 11(1): 5, 2014 Feb 24.
Article in English | MEDLINE | ID: mdl-24565171

ABSTRACT

OBJECTIVES: Emergence of multidrug resistance among Streptococcus pneumoniae (SP), has limited the available options used to treat infections caused by this organism. The objective of this study was to compare the role of monotherapy and combination therapy with ampicillin (AMP) and azithromycin (AZM) in eradicating bacterial burden and down regulating lung inflammation in a murine experimental pneumococcal infection model. METHODS: Balb/C mice were infected with 106 CFU of SP. Treatments with intravenous ampicillin (200 mg/kg) and azithromycin (50 mg/kg) either alone or in combination was initiated 18 h post infection, animals were sacrificed from 0 - 6 h after initiation of treatment. AMP and AZM were quantified in serum by microbiological assay. Levels of TNF-α, IFN-γ IL-6, and IL-10 in serum and in lungs, along with myeloperoxidase, inflammatory cell count in broncho alveolar lavage fluid, COX-2 and histopathological changes in lungs were estimated. RESULTS: Combination therapy down regulated lung inflammation and accelerated bacterial clearance. This approach also significantly decreased TNF-α, IFN-γ, IL-6 and increased IL-10 level in serum and lungs along with decreased myeloperoxidase, pulmonary vascular permeability, inflammatory cell numbers and COX-2 levels in lungs. CONCLUSIONS: Combinatorial therapy resulted in comparable bactericidal activity against the multi-drug resistant isolate and may represent an alternative dosing strategy, which may help to alleviate problems with pneumococcal pneumonia.

18.
J Neurochem ; 129(1): 143-54, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24236890

ABSTRACT

Japanese encephalitis virus (JEV), a single-stranded RNA (ssRNA) virus, is the leading cause of encephalitis in Asia. Microglial activation is one of the key events in JEV-induced neuroinflammation. Although the various microRNAs (miRNAs) has been shown to regulate microglia activation during pathological conditions including neuroviral infections, till date, the involvement of miRNAs in JEV infection has not been evaluated. Hence, we sought to evaluate the possible role of miRNAs in mediating JEV-induced microglia activation. Initial screening revealed significant up-regulation of miR-29b in JEV-infected mouse microglial cell line (BV-2) and primary microglial cells. Furthermore, using bioinformatics tools, we identified tumor necrosis factor alpha-induced protein 3, a negative regulator of nuclear factor-kappa B signaling as a potential target of miR-29b. Interestingly, in vitro knockdown of miR-29b resulted in significant over-expression of tumor necrosis factor alpha-induced protein 3, and subsequent decrease in nuclear translocation of pNF-κB. JEV infection in BV-2 cell line elevated inducible nitric oxide synthase, cyclooxygenase-2, and pro-inflammatory cytokine expression levels, which diminished after miR-29b knockdown. Collectively, our study demonstrates involvement of miR-29b in regulating JEV- induced microglial activation.


Subject(s)
Cysteine Endopeptidases/biosynthesis , Encephalitis Virus, Japanese , Encephalitis, Japanese/metabolism , Intracellular Signaling Peptides and Proteins/biosynthesis , MicroRNAs/physiology , Microglia/metabolism , Microglia/virology , Animals , Animals, Newborn , Encephalitis, Japanese/genetics , Female , Male , Mice , Mice, Inbred BALB C , Tumor Necrosis Factor alpha-Induced Protein 3
19.
Cell Immunol ; 285(1-2): 100-10, 2013.
Article in English | MEDLINE | ID: mdl-24140964

ABSTRACT

Viruses have evolved various mechanisms to subvert the host's immune system and one of them is preventing the infected cells from sending out chemotactic signals to activate the adaptive immune response. Japanese encephalitis virus (JEV) is a neuropathologic flavivirus that is responsible for significant number of child mortalities in various parts of South-East Asia. In this study we show that JEV modulates suppressors of cytokine signaling (SOCS)1 and 3 expression in macrophages to bring about changes in the JAK-STAT signaling cascade, so as to inhibit proinflammatory cyto/chemokine release. Using real time PCR, immunoblotting and immunofluorescent staining, we show that the expression of type 1 interferons and intracellular expression of viral genes are also affected over time. Also, following the initial activation of SOCS1 and 3, there is production of interferon-inducible anti-viral proteins in the cells which may be responsible for inhibiting viral replication. However, even at later time points, viral genes were still detected from the macrophages, albeit at lesser quantities, than earlier time points, indicative of intracellular persistence of the virus in a latent form. On knocking down SOCS1 and SOCS3 we found a significant decrease in viral gene expression at an early time point, indicating the dysregulation of the signaling cascade leading to increased production of interferon-inducible anti-viral proteins. Taken together, our study provides an insight into the role of JEV infection in modulating the JAK-STAT pathway with the help of SOCS leading to the generation of an antiviral innate immune response.


Subject(s)
Encephalitis Virus, Japanese/metabolism , Encephalitis, Japanese/immunology , Macrophages/metabolism , Suppressor of Cytokine Signaling Proteins/metabolism , Animals , Cells, Cultured , Chemokines/biosynthesis , Cytokines/biosynthesis , Encephalitis Virus, Japanese/immunology , Female , Immunity, Innate/immunology , Interferon Type I/biosynthesis , Janus Kinases/metabolism , Macrophages/immunology , Male , Mice , Mice, Inbred BALB C , NF-kappa B/antagonists & inhibitors , RNA Interference , RNA, Small Interfering , STAT Transcription Factors/metabolism , Signal Transduction/immunology , Suppressor of Cytokine Signaling 1 Protein , Suppressor of Cytokine Signaling 3 Protein , Suppressor of Cytokine Signaling Proteins/biosynthesis , Suppressor of Cytokine Signaling Proteins/genetics , Virus Replication/immunology
20.
Immunobiology ; 218(10): 1235-47, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23706498

ABSTRACT

Japanese encephalitis virus (JEV) is a common cause of encephalitis in humans who are dead-end hosts producing negligible viremia. The virus reaches the brain and causes massive inflammation. Our study seeks to understand the virus-host interaction using the murine monocyte/macrophage cell line RAW264.7, an antigen presenting cell involved in eliciting an innate immune response. We have discovered several interesting phenomena occurring in JEV-infected RAW264.7 cells which diverge from established observations. JEV remains inside RAW264.7 and appears to have little negative effect on cell viability. Expression studies of major histocompatibility complexes (MHC) and co-stimulatory molecules show inhibition of antigen presentation. There is enhanced immune suppression creating an anti-viral milieu. Expression of pro-inflammatory cytokines and chemokines is suppressed along with increased expression of anti-inflammatory molecules. Histone deacetylases (HDACs) have known inflammatory properties. In our study, through modulation of HDACs JEV seems to induce a crucial anti-inflammatory and anti-viral role in host macrophages.


Subject(s)
Encephalitis Virus, Japanese/immunology , Encephalitis/immunology , Histone Deacetylases/metabolism , Macrophages/immunology , Animals , Antigen Presentation , Catechin/analogs & derivatives , Catechin/pharmacology , Cell Line , Histones/genetics , Histones/metabolism , Host-Pathogen Interactions/immunology , Humans , Immune Evasion , Immunity, Innate , Inflammation Mediators/metabolism , Interferons/metabolism , Macrophages/virology , Mice
SELECTION OF CITATIONS
SEARCH DETAIL