Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters











Publication year range
1.
Ultrasonics ; 138: 107273, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38387138

ABSTRACT

In this study the Non-Linear Ultrasonic Sideband Peak Count-Index (SPC-I) technique is used as the foundation for anovel approach towards acoustic source localization (ASL) in orthotropic composite plates. The SPC-I based technique proposed here does not require the signal attenuation information or any knowledge on the time of arrival of the signal. It should be noted that since individual sensors can have varying sensitivities, the signal attenuation measured from the recorded signal amplitude is not very reliable. In addition, it is not necessary to have any prior knowledge of the mechanical properties of the composite plate material. All these are achievable by attaching 25 sensors that are well-scattered on the surface of the plate. The signals that are generated by an acoustic source are recorded by these 25 sensors. The recorded signals are then analyzed to derive the SPC-I value for each signal. The calculated SPC-I values are run through an optimization algorithm to predict the acoustic source location. Such localization is possible because the composite plate is inherently a non-linear material. Hence, as the signal travels longer distances through a composite plate, the recorded signal should show increasing level of distortion due to material non-linearity and dispersion. This phenomenon manifests itself primarily as a consequence of signal scattering and frequency modulation. Because of this, the phenomena of increasing distortion in the signal with increasing propagation distance can be exploited and utilized to predict the location of the acoustic source by solely utilizing the SPC-I values. This acoustic source localization technique is experimentally verified on a Carbon Fiber Reinforced (CFR) composite plate of dimension 500 mm x 500 mm with a thickness of 1 mm. The experimental results confirmed the feasibility of the proposed technique.

2.
Ultrasonics ; 119: 106620, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34673322

ABSTRACT

An improved technique for sensing damage initiation and progression in thermoplastic resin composite plate specimens is presented in this study. The composite plate specimens are investigated by using a nonlinear ultrasonic (NLU) technique called Sideband Peak Count Index or SPC-I. The technique presented in this paper is an improvement from the previous SPC-I technique. This improved technique provides more reliable and consistent results and can monitor the damage progression over a wide range. In this paper the narrow band SPC-I technique is introduced to replace the conventional wide band SPC-I technique. The method implemented here is improved in three ways. First and foremost the narrow band SPC-I technique is introduced. Secondly, the non-permanently adhered gel coupled Lead-Zirconate-Titanate (PZT) transducers are used to reduce inconsistency in transducer adhesion and manufacturing. Lastly, higher sampling rate equipment is used for better signal resolution and peak counting. The experiments are performed on 4 sets of composite plate specimens fabricated using two composite fiber materials (Glass and Basalt) that have increasing levels of damage. The composite plate specimens were damaged by a falling weight impact machine with increasing impact energy (0 J, 10 J, 20 J and 30 J). The composite plate specimens were examined by propagating a narrow band chirp signal through the specimens using gel coupled transducers in a transmission mode setup. The received signals were recorded and analyzed using the NLU SPC-I technique. The modified SPC-I technique proposed in this paper can reliably and consistently detect both initiation and progression of damage in the composite plate specimens.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 238: 118426, 2020 Sep 05.
Article in English | MEDLINE | ID: mdl-32388236

ABSTRACT

1-methyl-2(1H)-quinolinone (MeQone) forms the framework of several hundred quinolone alkaloid molecules, both natural and synthetic, which are being used in various biological applications. In this work, we present experimental and theoretical spectroscopic investigation on the MeQone in its ground and first electronic excited states. The vibronically resolved fluorescence excitation (FE) spectrum of MeQone is recorded within 700 cm-1 to the electronic origin under the supersonic jet-cooled condition. The dispersed fluorescence (DF) spectra for bands observed in the FE spectrum were also recorded. Bands observed in DF spectra were identified and assigned with the help of Density Functional Theory (DFT) calculated harmonic vibrational frequencies. Based on the assignments of bands in the ground electronic state and TD-DFT calculated frequencies for the first excited state, we have identified and successfully assigned the bands observed in FE spectrum. This study could be helpful to understand the photophysical properties of MeQone derivatives, the quinolone alkaloids.

4.
Ultrasonics ; 108: 106113, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32278501

ABSTRACT

A novel experimental technique based on point contact and Coulomb coupling is devised and optimized for ultrasonic imaging of bulk and guided waves propagation in piezo-ceramics. The Coulomb coupling technique exploits the coupling and transfer of electric field to mechanical vibrations by excitation of phonons. The point contact excitation and detection technique facilitates the spatial-temporal imaging of ultrasonic waves. The motivation of this research is the diagnosis and localization of surface cracks in the piezoelectric sensors and actuators. The underlying principle of the detection scheme is that any discontinuity on the surface causes high localization of electric gradient. The localized electric field at the defect boundaries enables then to behave as secondary passive ultrasonic sources resulting in strong back reflections. However, due to the interference between transmitted and reflected wave components from rigid boundaries and defect, the resolution on the localization of the damage is challenging. Therefore, an algorithm based on the two-dimensional spectral decomposition is utilized for selective suppression of the transmitted wave. The algorithm includes data transformation and vectorization in polar coordinates for efficient spectral decomposition. In the spectral domain, the complex wave component (phase and amplitude) are suppressed for the transmitted wave field. The reflected wave component in the spectral domain is retained and retrieved back using inverse spectral transformation. The algorithm is successful in retaining and exemplifying only the reflected wave sources arising from the strong scattering of ultrasonic waves from the surface and sub-surface defects. In summary, a novel experimental technique based on Coulomb coupling and spectral decomposition technique has been implemented for localization of surface defect in piezo-ceramic structures.

5.
J Mol Model ; 25(5): 131, 2019 Apr 25.
Article in English | MEDLINE | ID: mdl-31025122

ABSTRACT

The present study provides a detailed quantum chemical description of the physicochemical interactions between poly-vinylidene fluoride (PVDF) and 1-butyl-3-methyl-imidazolium tetrafluoro borate ([BMIM][BF4]) ionic liquid (IL). Geometry optimization and frequency calculations are carried out for four monomer units of α- and ß-PVDF, [BMIM][BF4], and PVDF/[BMIM][BF4] using dispersion corrected density functional theory. The effects of solvation on the systems under study are demonstrated for three polar aprotic solvents, namely tetra-hydrofuran (THF), acetone, and n,n-dimethyl formamide (DMF) using the integral equation formalism polarizable continuum model (IEFPCM). Calculated negative solvation free energy values suggest solution phase stability of the systems under study. Binding and interaction energies for ß-PVDF/IL are found higher in magnitude than those for α-PVDF/IL. The nonbonding interaction phenomenon of ß-PVDF/[BMIM][BF4] is elucidated on the basis of natural bond orbital (NBO), Bader's quantum theory of atoms in molecules (QTAIM), delocalization indices, Hirshfeld surface, and reduced density gradient (RDG) analyses. Both anions and cations of ionic liquids are found to show weak van der Waals interaction with PVDF molecule but the anion ([BF4]-)/PVDF interaction is found to be stronger than cation ([BMIM]+)/PVDF interaction. Inter-unit C-H⋯F type hydrogen bonds are found to show improper (causing blue shifts in vibrational frequencies) nature. Frontier molecular orbital analysis is carried out, and different chemical parameters like electronegativity, chemical potential, chemical hardness and softness, and electrophilicity index are calculated using Koopmans' theorem. Thermochemical calculations are also performed, and the variation in different standard thermodynamic parameters with temperature is formulated. Graphical abstract (a) Hirshfeld surface mapped onto electron density and (b) NCI isosurfaces showing inter-unit interactions of ß-PVDF/[BMIM][BF4].

6.
Ultrasonics ; 56: 271-8, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25245206

ABSTRACT

Acoustic source localization techniques generally assume straight line propagation of waves from the acoustic source to the sensor. However, it is well-known that in anisotropic plates the acoustic energy does not always propagate in straight lines. Even for isotropic plates containing a cavity or an inclusion between the acoustic source and the sensor the straight line propagation assumption is violated. In such cases only options available in localizing acoustic source is to use relatively expensive distributed sensor systems, or to follow time reversal techniques based on the impulse response functions which is labor intensive and computationally demanding. A two-step hybrid technique is proposed in this paper for predicting acoustic source in anisotropic plates. During the first step it was assumed that the waves propagated along straight lines from the acoustic source to the sensor. The source was localized with this simplifying assumption. Then this first prediction was improved in the second step by solving an optimization problem. Experimental results showed that the second step always moved the estimates towards the actual source location. Thus it always reduced the prediction error irrespective of whether the final prediction coincided with the actual source location or not.

7.
J Acoust Soc Am ; 135(2): EL82-7, 2014 Feb.
Article in English | MEDLINE | ID: mdl-25234919

ABSTRACT

Dynamic non-classical nonlinear analyses show promise for improved damage diagnostics in materials that exhibit such structure at the mesoscale, such as concrete. In this study, nonlinear non-classical dynamic material behavior from standard vibration test data, using pristine and frost damaged cement mortar bar samples, is extracted and quantified. The procedure is robust and easy to apply. The results demonstrate that the extracted nonlinear non-classical parameters show expected sensitivity to internal damage and are more sensitive to changes owing to internal damage levels than standard linear vibration parameters.

8.
Ultrasonics ; 52(8): 989-95, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22989949

ABSTRACT

Lead Zirconate Titanate (PZT) is a piezo-electric ceramic material that needs to be characterized for its potential use in microelectronics. Energy dispersive X-ray analysis (EDX) is conducted to determine the chemical composition of the PZT ceramics. The scanning electron microscope (SEM) is performed to study the surface morphology, grain structure and grain boundaries. The SEM image helps us to understand the surface wave propagation and scattering phenomena by the PZT and the reason for its anisotropy and inhomogeneity due to the grain structure. In this paper scanning acoustic microscopy at 100 MHz excitation frequency is conducted for determining mechanical properties of PZT. Earlier works reported only the longitudinal wave speed in PZT while in this paper longitudinal, shear and surface acoustic wave speeds of sintered PZT are measured from its acoustic material signature (AMS) curves, also known as V(z) curves. AMS or V(z) curve is the variation of the output voltage as a function of the distance between the acoustic lens focal point and the reflecting surface. The average velocities of longitudinal, shear and surface acoustic waves in a PZT specimen are determined from its V(z) curve generated at 100 MHz excitation frequency and found to be over 5000 m/s, over 3000 m/s and between 2500 and 3000 m/s, respectively. From these velocities all elastic constants of the specimen are obtained.

9.
Ultrasonics ; 50(6): 583-91, 2010 May.
Article in English | MEDLINE | ID: mdl-20071000

ABSTRACT

In spite of many advances in analytical and numerical modeling techniques for solving different engineering problems, an efficient solution technique for wave propagation modeling of an electromagnetic acoustic transducer (EMAT) system is still missing. Distributed point source method (DPSM) is a newly developed semi-analytical technique developed since 2000 by Placko and Kundu (2007) [12] that is very powerful and straightforward for solving various engineering problems, including acoustic and electromagnetic modeling problems. In this study DPSM has been employed to model the Lorentz type EMAT with a meander line and flat spiral type coil. The problem of wave propagation has been solved and eddy currents and Lorentz forces have been calculated. The displacement field has been obtained as well. While modeling the Lorentz force the effect of dynamic magnetic field has been considered that most current analyses ignore. Results from this analysis have been compared with the finite element method (FEM) based predictions. It should be noted that with the current state of knowledge this problem can be solved only by FEM.


Subject(s)
Acoustics , Electromagnetic Phenomena , Models, Theoretical , Transducers
10.
Indian J Public Health ; 53(4): 229-31, 2009.
Article in English | MEDLINE | ID: mdl-20469761

ABSTRACT

Poisonings, stings and bites continue to be important cause of pediatric morbidity and hospitalization. The toxic product involved in the poisoning varies in different geographical areas and in same area over time. A retrospective study was conducted amongst the children of the age group up to 12 years admitted to a tertiary care hospital in Kolkata from January 2005 to December 2008. Total number of admissions was 17019 and that for accidental poisoning was 451 (2.65%). Kerosene constituted the largest group (54.55%). Mosquito coil and refill liquid were the new additions to the list of poisons and their ingestion was cause for admission of 15 (3.33%) children. The number of admissions due to stings and bites was 108 (0.63% of all admissions) during the above period. Of all the cases, 9 (1.83%) cases of accidental poisoning and 4 (3.7%) cases of stings and bites died.


Subject(s)
Bites and Stings/epidemiology , Poisoning/epidemiology , Child , Child, Preschool , Female , Hospitals/statistics & numerical data , Humans , India/epidemiology , Infant , Male , Retrospective Studies
11.
J Chem Phys ; 126(11): 114312, 2007 Mar 21.
Article in English | MEDLINE | ID: mdl-17381211

ABSTRACT

The laser induced fluorescence excitation and dispersed fluorescence spectra of three nitrogen heterocyclic molecules 1-methyl-2(1H)pyridone (1MPY), 1-methyl-2(1H)pyridinimine (1MPI), and 3-methyl-2(1H)pyridone (3MPY) have been studied under supersonic jet cooled condition. The methyl torsional and some low frequency vibrational transitions in the fluorescence excitation spectrum were assigned for 1MPY. These new assignments modify the potential parameters to the methyl torsion reported earlier. Some striking similarities exist between the torsional and vibrational transitions in the fluorescence excitation spectra of 1MPY and 1MPI. Apart from pure torsional transitions, a progression of vibration-torsion combination bands was observed for both these molecules. The excitation spectrum of 3MPY resembles the spectrum of its parent molecule, 2-pyridone. The barrier height of the methyl torsion in the excited state of 3MPY is highest amongst all these molecules, whereas the barrier in 1MPI is higher than that of 1MPY. To get an insight into the methyl torsional barrier for these molecules, results of the ab initio calculations were compared with the experimental results. It was found that the conformation of the methyl group undergoes a 60 degrees rotation in the excited state in all these molecules with respect to their ground state conformation. This phase shift of the excited state potential is attributed to the pi*-sigma* hyperconjugation between the out-of-plane hydrogen of the methyl group and the molecular frame. It has been inferred that the change in lowest unoccupied molecular orbital energy plays the dominant role in the excited state barrier formation.

12.
J Chem Phys ; 126(11): 114313, 2007 Mar 21.
Article in English | MEDLINE | ID: mdl-17381212

ABSTRACT

To get the insight into the electronic structure-methyl torsion correlation in nitrogen heterocyclic molecules, a comparative study on torsion of the methyl group in 1-methyl-2(1H)pyridone (1MPY), 1-methyl-2(1H)pyridinimine (1MPI), and 3-methyl-2(1H)pyridone (3MPY) was carried out using ab initio calculations. To understand the barrier forming mechanism in the ground state and its consequence on the molecular structure, the ground state torsional potential has been investigated by partitioning the barrier energy using the natural bond orbital (NBO) theoretical framework. The NBO analysis reveals that the delocalization energy is the barrier forming term whereas the Lewis energy is always antibarrier for all these molecules. To get further insight into the effect of local electronic structure on the methyl torsional barrier, the individual bond-antibond interactions and structural energy contributions have been investigated. It was found that when the bond order difference between the vicinal bonds does not change appreciably during the course of methyl rotation, the local electronic interactions with the methyl group do not play any decisive role in barrier formation as observed in the case of 1MPY and 1MPI. In these cases, it is the skeletal relaxation during methyl rotation that plays an important role in determining the barrier. On the other hand, if the bond order change is appreciable as is the case for 3MPY, the local interactions alone suffice to describe the origin of the torsional barrier of the methyl group.

13.
Indian J Public Health ; 51(4): 234-6, 2007.
Article in English | MEDLINE | ID: mdl-18232165

ABSTRACT

A study was conducted on the 52 serologically positive cases of dengue, admitted to the Dept. of Paediatrics, R.G. Kar Medical College & Hospital, from an outbreak in Kolkata. The most unusual feature observed in this study was that the rash in some cases was urticarial and intensely pruritic. The shock appeared early in the course of the disease and it was less commonly associated with bleeding (22%). One out of three dengue cases was a severe disease. It was not possible to predict a severe disease from the early symptomatology.


Subject(s)
Dengue/epidemiology , Disease Outbreaks , Severe Dengue/epidemiology , Child , Child, Preschool , Dengue/complications , Dengue/physiopathology , Female , Hospitals, Teaching/statistics & numerical data , Humans , India/epidemiology , Infant , Male , Severe Dengue/complications , Severe Dengue/physiopathology , Severity of Illness Index , Shock/etiology
14.
J Chem Phys ; 124(14): 144316, 2006 Apr 14.
Article in English | MEDLINE | ID: mdl-16626205

ABSTRACT

To understand the effect of the para position vinyl group substitution in toluene on methyl torsion, we investigated 4-methylstyrene, a benchmark molecule with an extended pi conjugation. The assignment for a 33 cm(-1) band in the excitation spectrum to the 3a(2) torsional transition, in addition to the assignments suggested previously for the other bands in the excitation spectrum, leads to the model potentials for the ground as well as excited states with V(3) (")=19.6 cm(-1), V(6) (")=-16.4 cm(-1) and V(3) (')=25.6 cm(-1), V(6) (')=-30.1 cm(-1), respectively. These potentials reveal that both in ground and excited states, the methyl group conformations are staggered with a 60 degrees phase shift between them. MP2 ab initio calculations support the ground state conformations determined from experiments, whereas Hartree-Fock calculations fail to do so. The origin of the modified ground state potential has been investigated by partitioning the barrier energy using the natural bond orbital (NBO) theoretical framework. The NBO analysis shows that the local delocalization (bond-antibond hyperconjugation) interactions of the methyl group with the parent molecule is sixfold symmetric. The threefold symmetric potential, on the other hand, stems from the interaction of the vinyl group and the adjacent ring pi bond. The threefold symmetric structural energy arising predominantly from the pi electron contribution is the barrier forming term that overwhelms the antibarrier contribution of the delocalization energy. The observed 60 degrees phase shift of the excited state potential is attributed to the pi(*)-sigma(*) hyperconjugation between out of plane hydrogens of the methyl group and the benzene ring.

15.
J Colloid Interface Sci ; 295(2): 364-73, 2006 Mar 15.
Article in English | MEDLINE | ID: mdl-16198360

ABSTRACT

Static energy minimization techniques have been used to elucidate the surface structures of magnetite crystals in pure and hydroxylated forms. Adsorption energy values in the presence of molecular water, dissociate water and simple carboxylic group molecule (formic acid) are calculated and we found that the carboxylic group do not adsorb strongly in most of the pure and hydroxylated surfaces in comparison to water. Since the associated calcium minerals are floated from magnetite using fatty acid collector, our calculations corroborate the flotation practice of removing these impurity minerals from magnetite.

16.
J Chem Phys ; 122(20): 204323, 2005 May 22.
Article in English | MEDLINE | ID: mdl-15945740

ABSTRACT

The laser induced fluorescence excitation and single vibronic excitation dispersed fluorescence spectra have been studied for supersonic jet cooled 1-methyl-2(1h)-pyridone. The methyl torsional bands and some low frequency vibrational transitions were assigned for both ground and excited states. The torsional parameters V(3)=244 cm(-1) and V(6)=15 cm(-1) for the ground state and V(3)=164 cm(-1) and V(6)=40 cm(-1) for the excited state were obtained. To get the insight into the methyl torsional barrier, ab initio calculations were performed and compared with the experimental results. Origin of potential barrier was traced by partitioning the barrier energy into changes in bond-antibond interaction, structural, and steric energies accompanying methyl rotation using natural bond orbital analysis. The role of local interactions in ascertaining the barrier potential reveals that its nature cannot be understood without considering the molecular flexing. The hyperconjugation between CHsigma(*) and ring pi(*) observed in lowest unoccupied molecular orbital (LUMO) stabilizes the methyl group conformer that undergoes a 60 degrees rotation in the excited state with respect to that of the ground state, and it is the change in LUMO that plays important role in the excited state barrier formation.

17.
J Phys Chem B ; 109(22): 11286-95, 2005 Jun 09.
Article in English | MEDLINE | ID: mdl-16852378

ABSTRACT

Atomistic simulation techniques are used to simulate surface structure and adsorption behavior of scarcely floatable wollastonite mineral in the presence of molecular and dissociated water, methanoic acid, and methylamine. The latter two additives represent the two widely used collector head-group molecules. The static energy minimization code METADISE was used to perform the simulation to obtain pure surface energy and adsorption energy in the presence of added molecule. The hydroxylation was performed on those surfaces where low-coordinated silicon was made to saturate by bonding with hydroxyl group, and the subsequent charge neutralization was maintained by adding proton on single-coordinated surface oxygen. A comparison of surface energies revealed that all the surfaces become stabilized in the presence of added molecules; however, the presence of methylamine decreased the surface energy to lower values. Adsorption of dissociated water is preferred by the {100} and {102} surfaces, whereas the {001} surface preferred methylamine adsorption, because these show highly negative adsorption energies. In terms of molecular adsorption, the preferred adsorption sequence for all the surfaces is methylamine > methanoic acid > water without considering coadsorption. For the {100} and {102} surfaces, the adsorption energy values of carboxylic acid and amine are more negative than that of water and therefore we conclude that both carboxyl and amine head-group molecules adsorb preferably on wollastonite. Our simulation verify usability of carboxylic acid head group as widely used collectors for wollastonite flotation and, at the same time, it predicts the use of amine head-group collectors as possible modifiers, which corresponds well with our experimental findings.


Subject(s)
Calcium Compounds/chemistry , Silicates/chemistry , Adsorption , Algorithms , Computer Simulation , Electrochemistry , Hydroxyl Radical/chemistry , Methylamines/chemistry , Models, Molecular , Water/chemistry
18.
J Nanosci Nanotechnol ; 4(8): 1076-80, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15656206

ABSTRACT

Metastable nanoclusters of ZnO semiconductor crystallites, 20 to 30 nm diameter, are synthesized by a reconstructive decomposition of a polymer precursor of dispersed Zn2+ cations in poly vinyl alcohol (PVA) polymer molecules. They have EPR (electron paramagnetic resonance) spectrum of distinct excitonic features. Multiple EPR bands appear in prominent intensities in oxygen vacancies VO+ and singly ionized Oi- and Zn(i)+ interstitials. A paramagnetic VO+ vacancy derives from usual diamagnetic O2- vacancy of VO++ (behaves as if doubly charged compared to the lattice) by addition of one electron. The results demonstrate the existence of a surface-interface or surface barrier layer in free-carrier depletion at the crystallite surface in the clusters and its effects on the Oi- and Zn(i)+ ionization states (determine green photoluminescence). Both VO+ and Zn(i)+ are curable by a thermal annealing in O2 gas. A cured sample of equilibrium structure achieved by heating at approximately 550 degrees C has a single EPR in Oi- at g = 1.990. The results are useful in understanding their correlation with EPR and optical properties in ZnO semiconductors and devices.


Subject(s)
Crystallization/methods , Electron Spin Resonance Spectroscopy/methods , Nanostructures/chemistry , Nanostructures/ultrastructure , Zinc Oxide/analysis , Zinc Oxide/chemistry , Macromolecular Substances/analysis , Macromolecular Substances/chemistry , Molecular Conformation , Nanostructures/analysis , Particle Size , Phase Transition , Semiconductors , Surface Properties
19.
Ultrasonics ; 39(7): 515-24, 2002 Apr.
Article in English | MEDLINE | ID: mdl-12102395

ABSTRACT

Acoustic microscopes can be used to measure Rayleigh and longitudinal or P-wave speeds in a specimen at microscopic resolution. The wave speeds are obtained from the interference pattern as a function of the defocus distance or V(z) curve. The received signal voltage amplitude Vis generated by two beams--the normally reflected central beam and a non-specularly reflected beam that strikes the fluid-solid interface at critical angle. It is shown in this paper that instead of analyzing the interference pattern between these two beams if we consider two other beams that follow the same path but travel through the coupling fluid multiple times before interfering then the V(z) curve generated by this higher order interference gives more accurate values for the material properties. The spacing distance between two successive dips of the V(z) curve is smaller for the higher order interference. The higher order interference, although weaker, gives more accurate results. Justification for the greater accuracy of the higher order interference is given in the paper. Material properties of silicon and bone are obtained by the new technique. Bones are microscopically heterogeneous and anisotropic. Anisotropic properties of homogeneous specimens can be obtained by the line focus acoustic microscope; however, it does not work when the specimen is microscopically heterogeneous. An attempt has been made here to obtain anisotropic properties of bones using point focus lens.


Subject(s)
Bone and Bones/physiology , Silicon , Ultrasonics , Anisotropy , Elasticity , Models, Theoretical
20.
J Orthop Res ; 20(1): 151-8, 2002 Jan.
Article in English | MEDLINE | ID: mdl-11853082

ABSTRACT

The propagation speed (C) of surface acoustic waves (SAW), e.g. Rayleigh (R-waves) and longitudinal lateral waves (L-waves), the latter being the surface manifestation of the longitudinal waves, strongly reflect mechanical properties of materials. In view of an increasing interest in ultrasonic methodology in the field of bone biomechanics, we tested the hypothesis that both R- and L-waves can be excited in trabecular bone using an acoustic microscope at 1 GHz and that their speeds (C(R) and C(L)) can be extracted from V(z)-curves, i.e. plots of lens output voltage as a function of the lens focal point position with respect to the specimen surface. In accordance with V(z)-curves theoretically synthesized on the basis of incident field theory, experimental curves for canine femoral trabecular bone showed evidence of both R- and L-waves in almost all regions of recording. The measured CR ranged between 1.93 and 2.07 km/s (mean +/- SD.: 2.00=0.06 km/s) and the C(L) ranged between 2.33 and 4.33 km/s (3.37+/-0.61 km/s). Knowledge of both speeds allowed computation of a number of material constants by means of simple theory of elasticity and assumptions of the material density. We found values of Poisson ratio (v) ranging from 0.14 to 0.32 (0.23+/-0.07). Young's modulus (E) from 15 to 22.8 GPa (19.9+/-2.5 GPa) and the shear modulus (G) from 7.6 to 8.9 GPa (8.4+/-0.5 GPa). Anisotropy in the trabecular bone material was clearly detected at the micrometer level. In conclusion, the V(z)-curve method was successfully used to determine the distribution of material elastic constants of trabecular bone with micrometer resolution.


Subject(s)
Bone and Bones/physiology , Microscopy/methods , Acoustics , Animals , Anisotropy , Biomechanical Phenomena , Dogs , Elasticity , Microscopy/instrumentation , Models, Biological
SELECTION OF CITATIONS
SEARCH DETAIL