Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 211
Filter
1.
bioRxiv ; 2024 May 06.
Article in English | MEDLINE | ID: mdl-38766189

ABSTRACT

Despite the potential of targeted epigenetic therapies, most cancers do not respond to current epigenetic drugs. The Polycomb repressive complex EZH2 inhibitor tazemetostat was recently approved for the treatment of SMARCB1 -deficient epithelioid sarcomas, based on the functional antagonism between PRC2 and loss of SMARCB1. Through the analysis of tazemetostat-treated patient tumors, we recently defined key principles of their response and resistance to EZH2 epigenetic therapy. Here, using transcriptomic inference from SMARCB1 -deficient tumor cells, we nominate the DNA damage repair kinase ATR as a target for rational combination EZH2 epigenetic therapy. We show that EZH2 inhibition promotes DNA damage in epithelioid and rhabdoid tumor cells, at least in part via its induction of the transposase-derived PGBD5. We leverage this collateral synthetic lethal dependency to target PGBD5-dependent DNA damage by inhibition of ATR but not CHK1 using elimusertib. Consequently, combined EZH2 and ATR inhibition improves therapeutic responses in diverse patient-derived epithelioid and rhabdoid tumors in vivo . This advances a combination epigenetic therapy based on EZH2-PGBD5 synthetic lethal dependency suitable for immediate translation to clinical trials for patients.

2.
Cytotherapy ; 26(5): 466-471, 2024 May.
Article in English | MEDLINE | ID: mdl-38430078

ABSTRACT

BACKGROUND AIMS: Daratumumab, a human IgG monoclonal antibody targeting CD38, is a promising treatment for pediatric patients with relapsed or refractory T-cell acute lymphoblastic leukemia (T-ALL). We describe a case of delayed engraftment following a mismatched, unrelated donor hematopoietic stem cell transplant (HSCT) in a 14-year-old female with relapsed T-ALL, treated with daratumumab and chemotherapy. By Day 28 post-HSCT, the patient had no neutrophil engraftment but full donor myeloid chimerism. METHODS: We developed two novel, semi-quantitative, antibody-based assays to measure the patient's bound and plasma daratumumab levels to determine if prolonged drug exposure may have contributed to her slow engraftment. RESULTS: Daratumumab levels were significantly elevated more than 30 days after the patient's final infusion, and levels inversely correlated with her white blood cell counts. To clear daratumumab, the patient underwent several rounds of plasmapheresis and subsequently engrafted. CONCLUSIONS: This is the first report of both delayed daratumumab clearance and delayed stem cell engraftment following daratumumab treatment in a pediatric patient. Further investigation is needed to elucidate the optimal dosing of daratumumab for treatment of acute leukemias in pediatric populations as well as daratumumab's potential effects on hematopoietic stem cells and stem cell engraftment following allogenic HSCT.


Subject(s)
Antibodies, Monoclonal , Hematopoietic Stem Cell Transplantation , Transplantation, Homologous , Humans , Hematopoietic Stem Cell Transplantation/methods , Female , Antibodies, Monoclonal/therapeutic use , Adolescent , Transplantation, Homologous/methods , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Graft Survival/drug effects
3.
Cytotherapy ; 26(4): 351-359, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38349310

ABSTRACT

BACKGROUND AIMS: Traditional weight-based dosing of rabbit anti-thymocyte globulin (rATG) used in allogeneic hematopoietic cell transplantation (HCT) to prevent graft-versus-host disease (GVHD) and graft rejection leads to variable exposures. High exposures induce delayed CD4+immune reconstitution (CD4+IR) and greater mortality. We sought to determine the impact of rATG exposure in children and young adults receiving various types of EX-VIVO T-cell-depleted (EX-VIVO-TCD) HCT. METHODS: Patients receiving their first EX-VIVO-TCD HCT (CliniMACS CD34+, Isolex or soybean lectin agglutination), with removal of residual T cells by E-rosette depletion (E-) between 2008 and 2018 at Memorial Sloan Kettering Cancer Center were retrospectively analyzed. rATG exposure post-HCT was estimated (AU*d/L) using a validated population pharmacokinetic model. Previously defined rATG-exposures, <30, 30-55, ≥55 AU*d/L, were related with outcomes of interest. Cox proportional hazard and cause-specific models were used for analyses. RESULTS: In total, 180 patients (median age 11 years; range 0.1-44 years) were included, malignant 124 (69%) and nonmalignant 56 (31%). Median post-HCT rATG exposure was 32 (0-104) AU*d/L. Exposure <30 AU*d/L was associated with a 3-fold greater probability of CD4+IR (P < 0.001); 2- to 4-fold lower risk of death (P = 0.002); and 3- to 4-fold lower risk of non-relapse mortality (NRM) (P = 0.02). Cumulative incidence of NRM was 8-fold lower in patients who attained CD4+IR compared with those who did not (P < 0.0001). There was no relation between rATG exposure and aGVHD (P = 0.33) or relapse (P = 0.23). Effect of rATG exposure on outcomes was similar in three EX-VIVO-TCD methods. CONCLUSIONS: Individualizing rATG dosing to target a low rATG exposure post-HCT while maintaining total cumulative exposure may better predict CD4+IR, reduce NRM and increase overall survival, independent of the EX-VIVO-TCD method.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Humans , Child , Young Adult , Antilymphocyte Serum , Retrospective Studies , T-Lymphocytes , Hematopoietic Stem Cell Transplantation/adverse effects , Transplantation Conditioning
5.
Cancer Discov ; 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38315003

ABSTRACT

Epigenetic dependencies have become evident in many cancers. Based on antagonism between BAF/SWI/SNF and PRC2 in SMARCB1-deficient sarcomas, we recently completed the clinical trial of the EZH2 inhibitor tazemetostat. However, the principles of tumor response to epigenetic therapy in general, and tazemetostat in particular, remain unknown. Using functional genomics and diverse experimental models, we define molecular mechanisms of tazemetostat resistance in SMARCB1-deficient tumors. We found distinct acquired mutations that converge on the RB1/E2F axis and decouple EZH2-dependent differentiation and cell cycle control. This allows tumor cells to escape tazemetostat-induced G1 arrest, suggests a general mechanism for effective therapy, and provides prospective biomarkers for therapy stratification, including PRICKLE1. Based on this, we develop a combination strategy to circumvent tazemetostat resistance using bypass targeting of AURKB. This offers a paradigm for rational epigenetic combination therapy suitable for translation to clinical trials for epithelioid sarcomas, rhabdoid tumors, and other epigenetically dysregulated cancers.

6.
Sci Rep ; 14(1): 488, 2024 01 04.
Article in English | MEDLINE | ID: mdl-38177639

ABSTRACT

Network properties account for the complex relationship between genes, making it easier to identify complex patterns in their interactions. In this work, we leveraged these network properties for dual purposes. First, we clustered pediatric sarcoma tumors using network information flow as a similarity metric, computed by the Wasserstein distance. We demonstrate that this approach yields the best concordance with histological subtypes, validated against three state-of-the-art methods. Second, to identify molecular targets that would be missed by more conventional methods of analysis, we applied a novel unsupervised method to cluster gene interactomes represented as networks in pediatric sarcoma. RNA-Seq data were mapped to protein-level interactomes to construct weighted networks that were then subjected to a non-Euclidean, multi-scale geometric approach centered on a discrete notion of curvature. This provides a measure of the functional association among genes in the context of their connectivity. In confirmation of the validity of this method, hierarchical clustering revealed the characteristic EWSR1-FLI1 fusion in Ewing sarcoma. Furthermore, assessing the effects of in silico edge perturbations and simulated gene knockouts as quantified by changes in curvature, we found non-trivial gene associations not previously identified.


Subject(s)
Sarcoma, Ewing , Sarcoma , Soft Tissue Neoplasms , Humans , Child , Oncogene Proteins, Fusion/genetics , Sarcoma/genetics , Sarcoma, Ewing/pathology , RNA-Binding Protein EWS/metabolism , Soft Tissue Neoplasms/genetics , Gene Expression , Gene Expression Regulation, Neoplastic , Proto-Oncogene Protein c-fli-1/genetics , Cell Line, Tumor
7.
Cancer Res ; 83(22): 3796-3812, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37812025

ABSTRACT

Multiple large-scale genomic profiling efforts have been undertaken in osteosarcoma to define the genomic drivers of tumorigenesis, therapeutic response, and disease recurrence. The spatial and temporal intratumor heterogeneity could also play a role in promoting tumor growth and treatment resistance. We conducted longitudinal whole-genome sequencing of 37 tumor samples from 8 patients with relapsed or refractory osteosarcoma. Each patient had at least one sample from a primary site and a metastatic or relapse site. Subclonal copy-number alterations were identified in all patients except one. In 5 patients, subclones from the primary tumor emerged and dominated at subsequent relapses. MYC gain/amplification was enriched in the treatment-resistant clones in 6 of 7 patients with multiple clones. Amplifications in other potential driver genes, such as CCNE1, RAD21, VEGFA, and IGF1R, were also observed in the resistant copy-number clones. A chromosomal duplication timing analysis revealed that complex genomic rearrangements typically occurred prior to diagnosis, supporting a macroevolutionary model of evolution, where a large number of genomic aberrations are acquired over a short period of time followed by clonal selection, as opposed to ongoing evolution. A mutational signature analysis of recurrent tumors revealed that homologous repair deficiency (HRD)-related SBS3 increases at each time point in patients with recurrent disease, suggesting that HRD continues to be an active mutagenic process after diagnosis. Overall, by examining the clonal relationships between temporally and spatially separated samples from patients with relapsed/refractory osteosarcoma, this study sheds light on the intratumor heterogeneity and potential drivers of treatment resistance in this disease. SIGNIFICANCE: The chemoresistant population in recurrent osteosarcoma is subclonal at diagnosis, emerges at the time of primary resection due to selective pressure from neoadjuvant chemotherapy, and is characterized by unique oncogenic amplifications.


Subject(s)
Bone Neoplasms , Osteosarcoma , Humans , Osteosarcoma/genetics , Whole Genome Sequencing , Genomics , Bone Neoplasms/genetics , Recurrence , DNA Copy Number Variations , Mutation
8.
ACS Nano ; 17(23): 23374-23390, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37688780

ABSTRACT

Diffuse large B-cell lymphoma (DLBCL) remains a formidable diagnosis in need of new treatment paradigms. In this work, we elucidated an opportunity for therapeutic synergy in DLBCL by reactivating tumor protein p53 with a stapled peptide, ATSP-7041, thereby priming cells for apoptosis and enhancing their sensitivity to BCL-2 family modulation with a BH3-mimetic, ABT-263 (navitoclax). While this combination was highly effective at activating apoptosis in DLBCL in vitro, it was highly toxic in vivo, resulting in a prohibitively narrow therapeutic window. We, therefore, developed a targeted nanomedicine delivery platform to maintain the therapeutic potency of this combination while minimizing its toxicity via packaging and targeted delivery of a stapled peptide. We developed a CD19-targeted polymersome using block copolymers of poly(ethylene glycol) disulfide linked to poly(propylene sulfide) (PEG-SS-PPS) for ATSP-7041 delivery into DLBCL cells. Intracellular delivery was optimized in vitro and validated in vivo by using an aggressive human DLBCL xenograft model. Targeted delivery of ATSP-7041 unlocked the ability to systemically cotreat with ABT-263, resulting in delayed tumor growth, prolonged survival, and no overt toxicity. This work demonstrates a proof-of-concept for antigen-specific targeting of polymersome nanomedicines, targeted delivery of a stapled peptide in vivo, and synergistic dual intrinsic apoptotic therapy against DLBCL via direct p53 reactivation and BCL-2 family modulation.


Subject(s)
Lymphoma, Large B-Cell, Diffuse , Proto-Oncogene Proteins c-bcl-2 , Humans , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/therapeutic use , Pharmaceutical Preparations , Tumor Suppressor Protein p53/metabolism , Cell Line, Tumor , Lymphoma, Large B-Cell, Diffuse/drug therapy , Lymphoma, Large B-Cell, Diffuse/metabolism , Lymphoma, Large B-Cell, Diffuse/pathology , Peptides/metabolism , Apoptosis
10.
Blood Adv ; 7(18): 5225-5233, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37379285

ABSTRACT

Busulfan is an alkylating drug routinely used in conditioning regimens for allogeneic hematopoietic cell transplantation (allo-HCT). A myeloablative conditioning regimen, including busulfan, is commonly used in patients undergoing T-cell depletion (TCD) and allo-HCT, but data on optimal busulfan pharmacokinetic (PK) exposure in this setting are limited. Between 2012 and 2019, busulfan PK was performed to target an area under the curve exposure between 55 and 66 mg × h/L over 3 days using a noncompartmental analysis model. We retrospectively re-estimated busulfan exposure following the published population PK (popPK) model (2021) and correlated it with outcomes. To define optimal exposure, univariable models were performed with P splines, wherein hazard ratio (HR) plots were drawn, and thresholds were found graphically as the points at which the confidence interval crossed 1. Cox proportional hazard and competing risk models were used for analyses. 176 patients were included, with a median age of 59 years (range, 2-71). Using the popPK model, the median cumulative busulfan exposure was 63.4 mg × h/L (range, 46.3-90.7). The optimal threshold was at the upper limit of the lowest quartile (59.5 mg × h/L). 5-year overall survival (OS) with busulfan exposure ≥59.5 vs <59.5 mg × h/L was 67% (95% CI, 59-76) vs 40% (95% CI, 53-68), respectively (P = .02), and this association remained in a multivariate analyses (HR, 0.5; 95% CI, 0.29; 0.88; P = .02). In patients undergoing TCD allo-HCT, busulfan exposure is significantly associated with OS. The use of a published popPK model to optimize exposure may significantly improve the OS.


Subject(s)
Busulfan , Hematopoietic Stem Cell Transplantation , Humans , Child, Preschool , Child , Adolescent , Young Adult , Adult , Middle Aged , Aged , Busulfan/adverse effects , Retrospective Studies , Transplantation, Homologous , Transplantation Conditioning/adverse effects , Hematopoietic Stem Cell Transplantation/adverse effects
11.
Nat Genet ; 55(6): 1022-1033, 2023 06.
Article in English | MEDLINE | ID: mdl-37169874

ABSTRACT

Patients with high-risk neuroblastoma generally present with widely metastatic disease and often relapse despite intensive therapy. As most studies to date focused on diagnosis-relapse pairs, our understanding of the genetic and clonal dynamics of metastatic spread and disease progression remain limited. Here, using genomic profiling of 470 sequential and spatially separated samples from 283 patients, we characterize subtype-specific genetic evolutionary trajectories from diagnosis through progression and end-stage metastatic disease. Clonal tracing timed disease initiation to embryogenesis. Continuous acquisition of structural variants at disease-defining loci (MYCN, TERT, MDM2-CDK4) followed by convergent evolution of mutations targeting shared pathways emerged as the predominant feature of progression. At diagnosis metastatic clones were already established at distant sites where they could stay dormant, only to cause relapses years later and spread via metastasis-to-metastasis and polyclonal seeding after therapy.


Subject(s)
Neoplasm Recurrence, Local , Neuroblastoma , Humans , Neoplasm Recurrence, Local/genetics , Neuroblastoma/genetics , Clonal Evolution , Mutation , Neoplasm Metastasis
13.
Clin Cancer Res ; 29(13): 2445-2455, 2023 07 05.
Article in English | MEDLINE | ID: mdl-36862133

ABSTRACT

PURPOSE: To overcome barriers to genomic testing for patients with rare cancers, we initiated a program to offer free clinical tumor genomic testing worldwide to patients with select rare cancer subtypes. EXPERIMENTAL DESIGN: Patients were recruited through social media outreach and engagement with disease-specific advocacy groups, with a focus on patients with histiocytosis, germ cell tumors (GCT), and pediatric cancers. Tumors were analyzed using the MSK-IMPACT next-generation sequencing assay with the return of results to patients and their local physicians. Whole-exome recapture was performed for female patients with GCTs to define the genomic landscape of this rare cancer subtype. RESULTS: A total of 333 patients were enrolled, and tumor tissue was received for 288 (86.4%), with 250 (86.8%) having tumor DNA of sufficient quality for MSK-IMPACT testing. Eighteen patients with histiocytosis have received genomically guided therapy to date, of whom 17 (94%) have had clinical benefit with a mean treatment duration of 21.7 months (range, 6-40+). Whole-exome sequencing of ovarian GCTs identified a subset with haploid genotypes, a phenotype rarely observed in other cancer types. Actionable genomic alterations were rare in ovarian GCT (28%); however, 2 patients with ovarian GCTs with squamous transformation had high tumor mutational burden, one of whom had a complete response to pembrolizumab. CONCLUSIONS: Direct-to-patient outreach can facilitate the assembly of cohorts of rare cancers of sufficient size to define their genomic landscape. By profiling tumors in a clinical laboratory, results could be reported to patients and their local physicians to guide treatment. See related commentary by Desai and Subbiah, p. 2339.


Subject(s)
Neoplasms, Germ Cell and Embryonal , Ovarian Neoplasms , Humans , Female , Mutation , Genomics , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Exome
14.
bioRxiv ; 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-36798379

ABSTRACT

Essential epigenetic dependencies have become evident in many cancers. Based on the functional antagonism between BAF/SWI/SNF and PRC2 in SMARCB1-deficient sarcomas, we and colleagues recently completed the clinical trial of the EZH2 inhibitor tazemetostat. However, the principles of tumor response to epigenetic therapy in general, and tazemetostat in particular, remain unknown. Using functional genomics of patient tumors and diverse experimental models, we sought to define molecular mechanisms of tazemetostat resistance in SMARCB1-deficient sarcomas and rhabdoid tumors. We found distinct classes of acquired mutations that converge on the RB1/E2F axis and decouple EZH2-dependent differentiation and cell cycle control. This allows tumor cells to escape tazemetostat-induced G1 arrest despite EZH2 inhibition, and suggests a general mechanism for effective EZH2 therapy. This also enables us to develop combination strategies to circumvent tazemetostat resistance using cell cycle bypass targeting via AURKB, and synthetic lethal targeting of PGBD5-dependent DNA damage repair via ATR. This reveals prospective biomarkers for therapy stratification, including PRICKLE1 associated with tazemetostat resistance. In all, this work offers a paradigm for rational epigenetic combination therapy suitable for immediate translation to clinical trials for epithelioid sarcomas, rhabdoid tumors, and other epigenetically dysregulated cancers.

15.
bioRxiv ; 2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36711976

ABSTRACT

Multiple large-scale tumor genomic profiling efforts have been undertaken in osteosarcoma, however, little is known about the spatial and temporal intratumor heterogeneity and how it may drive treatment resistance. We performed whole-genome sequencing of 37 tumor samples from eight patients with relapsed or refractory osteosarcoma. Each patient had at least one sample from a primary site and a metastatic or relapse site. We identified subclonal copy number alterations in all but one patient. We observed that in five patients, a subclonal copy number clone from the primary tumor emerged and dominated at subsequent relapses. MYC gain/amplification was enriched in the treatment-resistant clone in 6 out of 7 patients with more than one clone. Amplifications in other potential driver genes, such as CCNE1, RAD21, VEGFA, and IGF1R, were also observed in the resistant copy number clones. Our study sheds light on intratumor heterogeneity and the potential drivers of treatment resistance in osteosarcoma.

16.
Med ; 3(11): 774-791.e7, 2022 11 11.
Article in English | MEDLINE | ID: mdl-36195086

ABSTRACT

BACKGROUND: Malignant rhabdoid tumors (MRTs) and Wilms' tumors (WTs) are rare and aggressive renal tumors of infants and young children comprising ∼5% of all pediatric cancers. MRTs are among the most genomically stable cancers, and although WTs are genomically heterogeneous, both generally lack therapeutically targetable genetic mutations. METHODS: Comparative protein activity analysis of MRTs (n = 68) and WTs (n = 132) across TCGA and TARGET cohorts, using metaVIPER, revealed elevated exportin 1 (XPO1) inferred activity. In vitro studies were performed on a panel of MRT and WT cell lines to evaluate effects on proliferation and cell-cycle progression following treatment with the selective XPO1 inhibitor selinexor. In vivo anti-tumor activity was assessed in patient-derived xenograft (PDX) models of MRTs and WTs. FINDINGS: metaVIPER analysis identified markedly aberrant activation of XPO1 in MRTs and WTs compared with other tumor types. All MRT and most WT cell lines demonstrated baseline, aberrant XPO1 activity with in vitro sensitivity to selinexor via cell-cycle arrest and induction of apoptosis. In vivo, XPO1 inhibitors significantly abrogated tumor growth in PDX models, inducing effective disease control with sustained treatment. Corroborating human relevance, we present a case report of a child with multiply relapsed WTs with prolonged disease control on selinexor. CONCLUSIONS: We report on a novel systems-biology-based comparative framework to identify non-genetically encoded vulnerabilities in genomically quiescent pediatric cancers. These results have provided preclinical rationale for investigation of XPO1 inhibitors in an upcoming investigator-initiated clinical trial of selinexor in children with MRTs and WTs and offer opportunities for exploration of inferred XPO1 activity as a potential predictive biomarker for response. FUNDING: This work was funded by CureSearch for Children's Cancer, Alan B. Slifka Foundation, NIH (U01 CA217858, S10 OD012351, and S10 OD021764), Michael's Miracle Cure, Hyundai Hope on Wheels, Cannonball Kids Cancer, Conquer Cancer the ASCO Foundation, Cycle for Survival, Paulie Strong Foundation, and the Grayson Fund.


Subject(s)
Kidney Neoplasms , Child , Humans , Child, Preschool , Cell Line, Tumor , Xenograft Model Antitumor Assays , Kidney Neoplasms/drug therapy , Exportin 1 Protein
17.
Nat Commun ; 13(1): 4297, 2022 07 25.
Article in English | MEDLINE | ID: mdl-35879366

ABSTRACT

Despite advances in multi-modal treatment approaches, clinical outcomes of patients suffering from PAX3-FOXO1 fusion oncogene-expressing alveolar rhabdomyosarcoma (ARMS) remain dismal. Here we show that PAX3-FOXO1-expressing ARMS cells are sensitive to pharmacological ataxia telangiectasia and Rad3 related protein (ATR) inhibition. Expression of PAX3-FOXO1 in muscle progenitor cells is not only sufficient to increase sensitivity to ATR inhibition, but PAX3-FOXO1-expressing rhabdomyosarcoma cells also exhibit increased sensitivity to structurally diverse inhibitors of ATR. Mechanistically, ATR inhibition leads to replication stress exacerbation, decreased BRCA1 phosphorylation and reduced homologous recombination-mediated DNA repair pathway activity. Consequently, ATR inhibitor treatment increases sensitivity of ARMS cells to PARP1 inhibition in vitro, and combined treatment with ATR and PARP1 inhibitors induces complete regression of primary patient-derived ARMS xenografts in vivo. Lastly, a genome-wide CRISPR activation screen (CRISPRa) in combination with transcriptional analyses of ATR inhibitor resistant ARMS cells identifies the RAS-MAPK pathway and its targets, the FOS gene family, as inducers of resistance to ATR inhibition. Our findings provide a rationale for upcoming biomarker-driven clinical trials of ATR inhibitors in patients suffering from ARMS.


Subject(s)
Rhabdomyosarcoma, Alveolar , Rhabdomyosarcoma, Embryonal , Rhabdomyosarcoma , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Humans , Oncogene Proteins, Fusion/genetics , PAX3 Transcription Factor/genetics , Paired Box Transcription Factors/genetics , Rhabdomyosarcoma/genetics , Rhabdomyosarcoma, Alveolar/drug therapy , Rhabdomyosarcoma, Alveolar/genetics , Rhabdomyosarcoma, Embryonal/genetics
18.
Clin Cancer Res ; 28(8): 1614-1627, 2022 04 14.
Article in English | MEDLINE | ID: mdl-35078859

ABSTRACT

PURPOSE: Therapy-related myelodysplastic syndrome and acute leukemias (t-MDS/AL) are a major cause of nonrelapse mortality among pediatric cancer survivors. Although the presence of clonal hematopoiesis (CH) in adult patients at cancer diagnosis has been implicated in t-MDS/AL, there is limited published literature describing t-MDS/AL development in children. EXPERIMENTAL DESIGN: We performed molecular characterization of 199 serial bone marrow samples from 52 patients treated for high-risk neuroblastoma, including 17 with t-MDS/AL (transformation), 14 with transient cytogenetic abnormalities (transient), and 21 without t-MDS/AL or cytogenetic alterations (neuroblastoma-treated control). We also evaluated for CH in a cohort of 657 pediatric patients with solid tumor. RESULTS: We detected at least one disease-defining alteration in all cases at t-MDS/AL diagnosis, most commonly TP53 mutations and KMT2A rearrangements, including involving two novel partner genes (PRDM10 and DDX6). Backtracking studies identified at least one t-MDS/AL-associated mutation in 13 of 17 patients at a median of 15 months before t-MDS/AL diagnosis (range, 1.3-32.4). In comparison, acquired mutations were infrequent in the transient and control groups (4/14 and 1/21, respectively). The relative risk for development of t-MDS/AL in the presence of an oncogenic mutation was 8.8 for transformation patients compared with transient. Unlike CH in adult oncology patients, TP53 mutations were only detectable after initiation of cancer therapy. Last, only 1% of pediatric patients with solid tumor evaluated had CH involving myeloid genes. CONCLUSIONS: These findings demonstrate the clinical relevance of identifying molecular abnormalities in predicting development of t-MDS/AL and should guide the formation of intervention protocols to prevent this complication in high-risk pediatric patients.


Subject(s)
Cancer Survivors , Leukemia, Myeloid, Acute , Neuroblastoma , Adult , Bone Marrow/pathology , Child , Clone Cells , Humans , Leukemia, Myeloid, Acute/genetics , Neuroblastoma/pathology
19.
Pediatr Blood Cancer ; 69(2): e29401, 2022 02.
Article in English | MEDLINE | ID: mdl-34693628

ABSTRACT

BACKGROUND: Wilms tumor is the most common childhood kidney cancer. Two distinct histological subtypes of Wilms tumor have been described: tumors lacking anaplasia (the favorable subtype) and tumors displaying anaplastic features (the unfavorable subtype). Children with favorable disease generally have a very good prognosis, whereas those with anaplasia are oftentimes refractory to standard treatments and suffer poor outcomes, leading to an unmet clinical need. MYCN dysregulation has been associated with a number of pediatric cancers including Wilms tumor. PROCEDURES: In this context, we undertook a functional genomics approach to uncover novel therapeutic strategies for those patients with anaplastic Wilms tumor. Genomic analysis and in vitro experimentation demonstrate that cell growth can be reduced by modulating MYCN overexpression via bromodomain 4 (BRD4) inhibition in both anaplastic and nonanaplastic Wilms tumor models. RESULTS: We observed a time-dependent reduction of MYCN and MYCC protein levels upon BRD4 inhibition in Wilms tumor cell lines, which led to cell death and proliferation suppression. BRD4 inhibition significantly reduced tumor volumes in Wilms tumor patient-derived xenograft (PDX) mouse models. CONCLUSIONS: We suggest that AZD5153, a novel dual-BRD4 inhibitor, can reduce MYCN levels in both anaplastic and nonanaplastic Wilms tumor cell lines, reduces tumor volume in Wilms tumor PDXs, and should be further explored for its therapeutic potential.


Subject(s)
Kidney Neoplasms , Wilms Tumor , Anaplasia/genetics , Animals , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Child , Down-Regulation , Female , Humans , Kidney Neoplasms/drug therapy , Kidney Neoplasms/genetics , Kidney Neoplasms/metabolism , Male , Mice , N-Myc Proto-Oncogene Protein/genetics , Nuclear Proteins/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Wilms Tumor/drug therapy , Wilms Tumor/genetics , Wilms Tumor/metabolism
20.
Blood Adv ; 6(3): 1054-1063, 2022 02 08.
Article in English | MEDLINE | ID: mdl-34788361

ABSTRACT

Traditional weight-based dosing results in variable rabbit antithymocyte globulin (rATG) clearance that can delay CD4+ T-cell immune reconstitution (CD4+ IR) leading to higher mortality. In a retrospective pharmacokinetic/pharmacodynamic (PK/PD) analysis of patients undergoing their first CD34+ T-cell-depleted (TCD) allogeneic hematopoietic cell transplantation (HCT) after myeloablative conditioning with rATG, we estimated post-HCT rATG exposure as area under the curve (arbitrary unit per day/milliliter [AU × day/mL]) using a validated population PK model. We related rATG exposure to nonrelapse mortality (NRM), CD4+ IR (CD4+ ≥50 cells per µL at 2 consecutive measures within 100 days after HCT), overall survival, relapse, and acute graft-versus-host disease (aGVHD) to define an optimal rATG exposure. We used Cox proportional hazard models and multistate competing risk models for analysis. In all, 554 patients were included (age range, 0.1-73 years). Median post-HCT rATG exposure was 47 AU × day/mL (range, 0-101 AU × day/mL). Low post-HCT area under the curve (<30 AU × day/mL) was associated with lower risk of NRM (P < .01) and higher probability of achieving CD4+ IR (P < .001). Patients who attained CD4+ IR had a sevenfold lower 5-year NRM (P < .0001). The probability of achieving CD4+ IR was 2.5-fold higher in the <30 AU × day/mL group compared with 30-55 AU × day/mL and threefold higher in the <30 AU × day/mL group compared with the ≥55 AU × day/mL group. In multivariable analyses, post-HCT rATG exposure ≥55 AU × day/mL was associated with an increased risk of NRM (hazard ratio, 3.42; 95% confidence interval, 1.26-9.30). In the malignancy subgroup (n = 515), a tenfold increased NRM was observed in the ≥55 AU × day/mL group, and a sevenfold increased NRM was observed in the 30-55 AU × day/mL group compared with the <30 AU × day/mL group. Post-HCT rATG exposure ≥55 AU × day/mL was associated with higher risk of a GVHD (hazard ratio, 2.28; 95% confidence interval, 1.01-5.16). High post-HCT rATG exposure is associated with higher NRM secondary to poor CD4+ IR after TCD HCT. Using personalized PK-directed rATG dosing to achieve optimal exposure may improve survival after HCT.


Subject(s)
Antilymphocyte Serum , Hematopoietic Stem Cell Transplantation , Antigens, CD34 , Antilymphocyte Serum/pharmacology , Antilymphocyte Serum/therapeutic use , Hematopoietic Stem Cell Transplantation/adverse effects , Hematopoietic Stem Cell Transplantation/methods , Humans , Neoplasm Recurrence, Local , Retrospective Studies , T-Lymphocytes
SELECTION OF CITATIONS
SEARCH DETAIL
...