Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(22): 29016-29028, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38783839

ABSTRACT

Graphene has received much scientific attention as an electrode material for lithium-ion batteries because of its extraordinary physical and electrical properties. However, the lack of structural control and restacking issues have hindered its application as carbon-based anode materials for next generation lithium-ion batteries. To improve its performance, several modification approaches such as edge-functionalization and electron-donating/withdrawing substitution have been considered as promising strategies. In addition, group 7A elements have been recognized as critical elements due to their electronegativity and electron-withdrawing character, which are able to further improve the electronic and structural properties of materials. Herein, we elucidated the chemistry of nanographenes with edge-substituted group 7A elements as lithium-ion battery anodes. The halogenated nanographenes were synthesized via bottom-up organic synthesis to ensure the structural control. Our study reveals that the presence of halogens on the edge of nanographenes not only tunes the structural and electronic properties but also impacts the material stability, reactivity, and Li+ storage capability. Further systematic spectroscopic studies indicate that the charge polarization caused by halogen atoms could regulate the Li+ transport, charge transfer energy, and charge storage behavior in nanographenes. Overall, this study provides a new molecular design for nanographene anodes aiming for next-generation lithium-ion batteries.

2.
Polymers (Basel) ; 15(8)2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37112112

ABSTRACT

In this study, butadiene sulfone (BS) was selected as an efficient electrolyte additive to stabilize the solid electrolyte interface (SEI) film on the lithium titanium oxide (LTO) electrodes in Li-ion batteries (LIBs). It was found that the use of BS as an additive could accelerate the growth of stable SEI film on the LTO surface, leading to the improved electrochemical stability of LTO electrodes. It can be supported by the BS additive to effectively reduce the thickness of SEI film, and it significantly enhances the electron migration in the SEI film. Consequently, the LIB-based LTO anode in the electrolyte containing 0.5 wt.% BS showed a superior electrochemical performance to that in the absence of BS. This work provides a new prospect for an efficient electrolyte additive for next-generation LIBs-based LTO anodes, especially when discharged to low voltage.

3.
Polymers (Basel) ; 14(21)2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36365484

ABSTRACT

In this current work, propargyl methacrylate (PMA) was successfully adopted to be an efficient electrolyte additive to stabilize the formation of a solid electrolyte interface (SEI) layer on mesoporous carbon microbeads (MCMB) in Li-ion batteries, especially at elevated temperatures. According to a series of material and electrochemical characterizations, the optimized concentration of PMA additive in the electrolyte was found to be 0.5 wt.%. The MCMB electrode cycled with the optimized 0.5 wt.% PMA-containing electrolyte exhibited impressive capacity retention of 90.3% after 50 cycles at 0.1C at elevated temperature, which was remarkably higher than that using the PMA-free electrolyte (83.5%). The improved electrochemical stability at elevated temperature could be ascribed to the rapid formation of stable and thin SEI layer on MCMB surface, which were investigated and suggested to be formed via PMA copolymerization reactions.

4.
Polymers (Basel) ; 14(2)2022 Jan 09.
Article in English | MEDLINE | ID: mdl-35054668

ABSTRACT

A new dietherpyrene-cored diamine monomer, namely, 4,5-bis(4-aminophenoxy)pyrene, was successful synthesized and formed a series of electroactive polyamides with an aryloxy linkage in a polymer main chain and bearing pyrene chromophore as a pendent group using conventional one-pot polycondensation reactions with commercial aromatic/aliphatic dicarboxylic acids. The resulting polyamides exhibited good solubility in polar organic solvents and, further, can be made into transparent films. They had appropriate levels of thermal stability with moderately high glass-transition values. The dilute NMP solutions of these polyamides exhibited pyrene characteristic fluorescence and also showed a remarkable additional excimer emission peak centered at 475 nm. Electrochemical studies of these polymer films showed that these polyamides have both p- and n-dopable states as a result of the formation of radical cations and anions of the electroactive pyrene moieties.

5.
Polymers (Basel) ; 12(12)2020 Nov 24.
Article in English | MEDLINE | ID: mdl-33255477

ABSTRACT

A new electroactive monomer with two 2,5-di(2-thienyl)pyrrole (SNS) units and one diphenylpyrenylamine (DPPA) subunit, namely N,N-bis(4-(2,5-di(2-thienyl)-1H-pyrrol-1-yl)-phenyl)-1-aminopyrene (DPPA-2SNS), was synthesized from 1,4-di-(2-thienyl)butane-1,4-dione with N,N-di(4-aminophenyl)-1-aminopyrene through the Paal-Knorr condensation reaction. Visible and near-infrared (NIR) electrochromic polymer films could be facilely generated on the ITO-glass surface by the electrochemical polymerization of DPPA-2SNS in an electrolyte solution. The electro-synthesized polymer films exhibit multi-staged redox processes and multi-colored anodic electrochromic behavior. A multi-colored electrochromism, with yellowish orange, greyish blue, and purplish black colors, was observed in the polymer film by applying a positive potential. The polymer films exhibit reasonable coloration efficiency, fast response time, and good cycling stability, especially when switched between neutral and the first oxidation states. For comparison, N-(1-pyrenyl)-2,5-di(2-thienyl)pyrrole (Py-SNS) was also prepared and characterized with electrochemical and electro-optical properties.

SELECTION OF CITATIONS
SEARCH DETAIL
...