Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Blood ; 144(2): 156-170, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38684032

ABSTRACT

ABSTRACT: Hematopoietic stem cells (HSCs) are characterized by the ability to self-renew and to replenish the hematopoietic system. The cell-cycle kinase cyclin-dependent kinase 6 (CDK6) regulates transcription, whereby it has both kinase-dependent and kinase-independent functions. Herein, we describe the complex role of CDK6, balancing quiescence, proliferation, self-renewal, and differentiation in activated HSCs. Mouse HSCs expressing kinase-inactivated CDK6 show enhanced long-term repopulation and homing, whereas HSCs lacking CDK6 have impaired functionality. The transcriptomes of basal and serially transplanted HSCs expressing kinase-inactivated CDK6 exhibit an expression pattern dominated by HSC quiescence and self-renewal, supporting a concept, in which myc-associated zinc finger protein (MAZ) and nuclear transcription factor Y subunit alpha (NFY-A) are critical CDK6 interactors. Pharmacologic kinase inhibition with a clinically used CDK4/6 inhibitor in murine and human HSCs validated our findings and resulted in increased repopulation capability and enhanced stemness. Our findings highlight a kinase-independent role of CDK6 in long-term HSC functionality. CDK6 kinase inhibition represents a possible strategy to improve HSC fitness.


Subject(s)
Cyclin-Dependent Kinase 6 , Hematopoietic Stem Cells , Cyclin-Dependent Kinase 6/metabolism , Cyclin-Dependent Kinase 6/genetics , Animals , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/cytology , Mice , Humans , Adult Stem Cells/metabolism , Adult Stem Cells/cytology , Cell Proliferation , Cell Differentiation , Mice, Inbred C57BL , Hematopoietic Stem Cell Transplantation , Cell Self Renewal/drug effects
2.
Nucleic Acids Res ; 52(4): 1975-1987, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38113283

ABSTRACT

During ribosome biogenesis a plethora of assembly factors and essential enzymes drive the unidirectional maturation of nascent pre-ribosomal subunits. The DEAD-box RNA helicase Dbp10 is suggested to restructure pre-ribosomal rRNA of the evolving peptidyl-transferase center (PTC) on nucleolar ribosomal 60S assembly intermediates. Here, we show that point mutations within conserved catalytic helicase-core motifs of Dbp10 yield a dominant-lethal growth phenotype. Such dbp10 mutants, which stably associate with pre-60S intermediates, impair pre-60S biogenesis at a nucleolar stage prior to the release of assembly factor Rrp14 and stable integration of late nucleolar factors such as Noc3. Furthermore, the binding of the GTPase Nug1 to particles isolated directly via mutant Dbp10 bait proteins is specifically inhibited. The N-terminal domain of Nug1 interacts with Dbp10 and the methyltransferase Spb1, whose pre-60S incorporation is also reduced in absence of functional Dbp10 resulting in decreased methylation of 25S rRNA nucleotide G2922. Our data suggest that Dbp10's helicase activity generates the necessary framework for assembly factor docking thereby permitting PTC rRNA methylation and the progression of pre-60S maturation.


Subject(s)
Peptidyl Transferases , Saccharomyces cerevisiae Proteins , Peptidyl Transferases/metabolism , Ribosomal Proteins/metabolism , Ribosome Subunits, Large, Eukaryotic/metabolism , Ribosomes/metabolism , RNA Helicases/genetics , RNA Helicases/metabolism , RNA Precursors/genetics , RNA Precursors/metabolism , RNA, Ribosomal/genetics , RNA, Ribosomal/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism
3.
Cell Genom ; 2(4): None, 2022 Apr 13.
Article in English | MEDLINE | ID: mdl-35591976

ABSTRACT

Identifying cellular functions dysregulated by disease-associated variants could implicate novel pathways for drug targeting or modulation in cell therapies. However, follow-up studies can be challenging if disease-relevant cell types are difficult to sample. Variants associated with immune diseases point toward the role of CD4+ regulatory T cells (Treg cells). We mapped genetic regulation (quantitative trait loci [QTL]) of gene expression and chromatin activity in Treg cells, and we identified 133 colocalizing loci with immune disease variants. Colocalizations of immune disease genome-wide association study (GWAS) variants with expression QTLs (eQTLs) controlling the expression of CD28 and STAT5A, involved in Treg cell activation and interleukin-2 (IL-2) signaling, support the contribution of Treg cells to the pathobiology of immune diseases. Finally, we identified seven known drug targets suitable for drug repurposing and suggested 63 targets with drug tractability evidence among the GWAS signals that colocalized with Treg cell QTLs. Our study is the first in-depth characterization of immune disease variant effects on Treg cell gene expression modulation and dysregulation of Treg cell function.

4.
Mol Syst Biol ; 18(3): e10820, 2022 03.
Article in English | MEDLINE | ID: mdl-35225431

ABSTRACT

Protein kinases play an important role in cellular signaling pathways and their dysregulation leads to multiple diseases, making kinases prime drug targets. While more than 500 human protein kinases are known to collectively mediate phosphorylation of over 290,000 S/T/Y sites, the activities have been characterized only for a minor, intensively studied subset. To systematically address this discrepancy, we developed a human kinase array in Saccharomyces cerevisiae as a simple readout tool to systematically assess kinase activities. For this array, we expressed 266 human kinases in four different S. cerevisiae strains and profiled ectopic growth as a proxy for kinase activity across 33 conditions. More than half of the kinases showed an activity-dependent phenotype across many conditions and in more than one strain. We then employed the kinase array to identify the kinase(s) that can modulate protein-protein interactions (PPIs). Two characterized, phosphorylation-dependent PPIs with unknown kinase-substrate relationships were analyzed in a phospho-yeast two-hybrid assay. CK2α1 and SGK2 kinases can abrogate the interaction between the spliceosomal proteins AAR2 and PRPF8, and NEK6 kinase was found to mediate the estrogen receptor (ERα) interaction with 14-3-3 proteins. The human kinase yeast array can thus be used for a variety of kinase activity-dependent readouts.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Humans , NIMA-Related Kinases/genetics , NIMA-Related Kinases/metabolism , Phosphorylation , Protein Kinases/genetics , Protein Kinases/metabolism , Proteins/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Two-Hybrid System Techniques
5.
J Lipid Res ; 63(3): 100172, 2022 03.
Article in English | MEDLINE | ID: mdl-35065923

ABSTRACT

Disturbances in lipid homeostasis can cause mitochondrial dysfunction and lipotoxicity. Perilipin 5 (PLIN5) decorates intracellular lipid droplets (LDs) in oxidative tissues and controls triacylglycerol (TG) turnover via its interactions with adipose triglyceride lipase and the adipose triglyceride lipase coactivator, comparative gene identification-58. Furthermore, PLIN5 anchors mitochondria to the LD membrane via the outermost part of the carboxyl terminus. However, the role of this LD-mitochondria coupling (LDMC) in cellular energy catabolism is less established. In this study, we investigated the impact of PLIN5-mediated LDMC in comparison to disrupted LDMC on cellular TG homeostasis, FA oxidation, mitochondrial respiration, and protein interaction. To do so, we established PLIN5 mutants deficient in LDMC whilst maintaining normal interactions with key lipolytic players. Radiotracer studies with cell lines stably overexpressing wild-type or truncated PLIN5 revealed that LDMC has no significant impact on FA esterification upon lipid loading or TG catabolism during stimulated lipolysis. Moreover, we demonstrated that LDMC exerts a minor if any role in mitochondrial FA oxidation. In contrast, LDMC significantly improved the mitochondrial respiratory capacity and metabolic flexibility of lipid-challenged cardiomyocytes, which was corroborated by LDMC-dependent interactions of PLIN5 with mitochondrial proteins involved in mitochondrial respiration, dynamics, and cristae organization. Taken together, this study suggests that PLIN5 preserves mitochondrial function by adjusting FA supply via the regulation of TG hydrolysis and that LDMC is a vital part of mitochondrial integrity.


Subject(s)
Lipid Droplets , Perilipin-5 , Lipase/genetics , Lipase/metabolism , Lipid Droplets/metabolism , Lipid Metabolism , Lipolysis/genetics , Mitochondria/metabolism , Perilipin-1/metabolism , Perilipin-2/metabolism , Perilipin-5/metabolism , Triglycerides/metabolism
6.
Curr Opin Chem Biol ; 66: 102100, 2022 02.
Article in English | MEDLINE | ID: mdl-34801969

ABSTRACT

It is often unclear how genetic variation translates into cellular phenotypes, including how much of the coding variation can be recovered in the proteome. Proteogenomic analyses of heterogenous cell lines revealed that the genetic differences impact mostly the abundance and stoichiometry of protein complexes, with the effects propagating post-transcriptionally via protein interactions onto other subunits. Conversely, large scale binary interaction analyses of missense variants revealed that loss of interaction is widespread and caused by about 50% disease-associated mutations, while deep scanning mutagenesis of binary interactions identified thousands of interaction-deficient variants per interaction. The idea that phenotypes arise from genetic variation through protein-protein interaction is therefore substantiated by both forward and reverse interaction proteomics. With improved methodologies, these two approaches combined can close the knowledge gap between nucleotide sequence variation and its functional consequences on the cellular proteome.


Subject(s)
Protein Interaction Mapping , Proteomics , Genetic Variation , Mutagenesis , Mutation , Protein Interaction Mapping/methods , Proteome/genetics , Proteome/metabolism , Proteomics/methods
7.
J Immunol ; 207(12): 2976-2991, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34810221

ABSTRACT

RUNX1 is a transcription factor that plays key roles in hematopoietic development and in hematopoiesis and lymphopoiesis. In this article, we report that RUNX1 regulates a gene expression program in naive mouse B cells that affects the dynamics of cell cycle entry in response to stimulation of the BCR. Conditional knockout of Runx1 in mouse resting B cells resulted in accelerated entry into S-phase after BCR engagement. Our results indicate that Runx1 regulates the cyclin D2 (Ccnd2) gene, the immediate early genes Fosl2, Atf3, and Egr2, and the Notch pathway gene Rbpj in mouse B cells, reducing the rate at which transcription of these genes increases after BCR stimulation. RUNX1 interacts with the chromatin remodeler SNF-2-related CREB-binding protein activator protein (SRCAP), recruiting it to promoter and enhancer regions of the Ccnd2 gene. BCR-mediated activation triggers switching between binding of RUNX1 and its paralog RUNX3 and between SRCAP and the switch/SNF remodeling complex member BRG1. Binding of BRG1 is increased at the Ccnd2 and Rbpj promoters in the Runx1 knockout cells after BCR stimulation. We also find that RUNX1 exerts positive or negative effects on a number of genes that affect the activation response of mouse resting B cells. These include Cd22 and Bank1, which act as negative regulators of the BCR, and the IFN receptor subunit gene Ifnar1 The hyperresponsiveness of the Runx1 knockout B cells to BCR stimulation and its role in regulating genes that are associated with immune regulation suggest that RUNX1 could be involved in regulating B cell tolerance.


Subject(s)
B-Lymphocytes , Core Binding Factor Alpha 2 Subunit , Animals , B-Lymphocytes/metabolism , Cell Cycle/genetics , Core Binding Factor Alpha 2 Subunit/genetics , Core Binding Factor Alpha 2 Subunit/metabolism , Hematopoiesis , Mice , Promoter Regions, Genetic
8.
Methods Mol Biol ; 1979: 235-250, 2019.
Article in English | MEDLINE | ID: mdl-31028642

ABSTRACT

DNA methylation at cytosine is a major epigenetic mark, heavily implicated in controlling key cellular processes such as development and differentiation, cellular memory, or carcinogenesis. Bisulfite treatment in conjunction with next generation sequencing has been a powerful tool for studying this modification in a quantitative manner in the context of the whole genome and with a single nucleotide resolution. This chapter describes a protocol for bisulfite sequencing adapted to a single-cell format that allows for capturing the methylation signal from up to 50% CpG nucleotides in each cell.


Subject(s)
DNA Methylation , High-Throughput Nucleotide Sequencing/methods , Single-Cell Analysis/methods , Animals , CpG Islands , Epigenesis, Genetic , Epigenomics/methods , Humans , Polymerase Chain Reaction/methods , Sulfites/chemistry
9.
Methods Mol Biol ; 1979: 269-282, 2019.
Article in English | MEDLINE | ID: mdl-31028644

ABSTRACT

Many of the key cellular processes including establishing the cell's identity are governed by chromatin proteins. Mapping their binding on the level of a single cell would give us important insights into a new dimension of cellular heterogeneity. However, ChIP-seq, the main method to study protein-DNA interaction in the chromatin context, has proven very challenging to scale down. ChIPmentation is a modification of ChIP-seq, in which the Tn5 transposase is used to introduce sequencing adapters in one step. This allows to significantly reduce the required input material. ChIPmentation is a robust and versatile approach and even though it has not yet achieved single-cell resolution, we believe that it is a very promising starting point for further downscaling.


Subject(s)
Chromatin Immunoprecipitation/methods , DNA-Binding Proteins/metabolism , DNA/metabolism , Single-Cell Analysis/methods , Animals , Base Sequence , DNA/genetics , Epigenesis, Genetic , Gene Library , High-Throughput Nucleotide Sequencing/methods , Humans , Polymerase Chain Reaction/methods
10.
Nature ; 563(7730): 197-202, 2018 11.
Article in English | MEDLINE | ID: mdl-30356220

ABSTRACT

As the first line of defence against pathogens, cells mount an innate immune response, which varies widely from cell to cell. The response must be potent but carefully controlled to avoid self-damage. How these constraints have shaped the evolution of innate immunity remains poorly understood. Here we characterize the innate immune response's transcriptional divergence between species and variability in expression among cells. Using bulk and single-cell transcriptomics in fibroblasts and mononuclear phagocytes from different species, challenged with immune stimuli, we map the architecture of the innate immune response. Transcriptionally diverging genes, including those that encode cytokines and chemokines, vary across cells and have distinct promoter structures. Conversely, genes that are involved in the regulation of this response, such as those that encode transcription factors and kinases, are conserved between species and display low cell-to-cell variability in expression. We suggest that this expression pattern, which is observed across species and conditions, has evolved as a mechanism for fine-tuned regulation to achieve an effective but balanced response.


Subject(s)
Cells/metabolism , Evolution, Molecular , Immunity, Innate/genetics , Immunity, Innate/immunology , Organ Specificity/genetics , Species Specificity , Transcription, Genetic/genetics , Animals , Cells/cytology , Cytokines/genetics , Humans , Promoter Regions, Genetic/genetics
11.
Nucleic Acids Res ; 43(3): 1418-32, 2015 Feb 18.
Article in English | MEDLINE | ID: mdl-25605797

ABSTRACT

The large number of chemical modifications that are found on the histone proteins of eukaryotic cells form multiple complex combinations, which can act as recognition signals for reader proteins. We have used peptide capture in conjunction with super-SILAC quantification to carry out an unbiased high-throughput analysis of the composition of protein complexes that bind to histone H3K9/S10 and H3K27/S28 methyl-phospho modifications. The accurate quantification allowed us to perform Weighted correlation network analysis (WGCNA) to obtain a systems-level view of the histone H3 histone tail interactome. The analysis reveals the underlying modularity of the histone reader network with members of nuclear complexes exhibiting very similar binding signatures, which suggests that many proteins bind to histones as part of pre-organized complexes. Our results identify a novel complex that binds to the double H3K9me3/S10ph modification, which includes Atrx, Daxx and members of the FACT complex. The super-SILAC approach allows comparison of binding to multiple peptides with different combinations of modifications and the resolution of the WGCNA analysis is enhanced by maximizing the number of combinations that are compared. This makes it a useful approach for assessing the effects of changes in histone modification combinations on the composition and function of bound complexes.


Subject(s)
Histones/metabolism , Proteins/metabolism , Animals , Cell Line, Tumor , Combinatorial Chemistry Techniques , Mass Spectrometry , Mice
12.
Mol Biol Cell ; 25(6): 904-15, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24430871

ABSTRACT

Methylated histones H3K9 and H3K27 are canonical epigenetic silencing modifications in metazoan organisms, but the relationship between the two modifications has not been well characterized. H3K9me3 coexists with H3K27me3 in pluripotent and differentiated cells. However, we find that the functioning of H3K9me3 is altered by H3S10 phosphorylation in differentiated postmitotic osteoblasts and cycling B cells. Deposition of H3K9me3/S10ph at silent genes is partially mediated by the mitogen- and stress-activated kinases (MSK1/2) and the Aurora B kinase. Acquisition of H3K9me3/S10ph during differentiation correlates with loss of paused S5 phosphorylated RNA polymerase II, which is present on Polycomb-regulated genes in embryonic stem cells. Reduction of the levels of H3K9me3/S10ph by kinase inhibition results in increased binding of RNAPIIS5ph and the H3K27 methyltransferase Ezh1 at silent promoters. Our results provide evidence of a novel developmentally regulated methyl-phospho switch that modulates Polycomb regulation in differentiated cells and stabilizes repressed states.


Subject(s)
B-Lymphocytes/metabolism , Epigenesis, Genetic , Histones/genetics , Osteoblasts/metabolism , Polycomb-Group Proteins/genetics , RNA Polymerase II/genetics , Animals , Aurora Kinase B/antagonists & inhibitors , Aurora Kinase B/genetics , Aurora Kinase B/metabolism , B-Lymphocytes/cytology , Binding Sites , Cell Differentiation/genetics , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Histones/metabolism , Lymphocyte Activation , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Methylation , Mice , Osteoblasts/cytology , Phosphorylation , Polycomb Repressive Complex 2/genetics , Polycomb Repressive Complex 2/metabolism , Polycomb-Group Proteins/metabolism , Promoter Regions, Genetic , Protein Binding , Protein Kinase Inhibitors/pharmacology , RNA Polymerase II/metabolism , Ribosomal Protein S6 Kinases, 90-kDa/antagonists & inhibitors , Ribosomal Protein S6 Kinases, 90-kDa/genetics , Ribosomal Protein S6 Kinases, 90-kDa/metabolism , Signal Transduction , Spleen/cytology , Spleen/metabolism
13.
Cell Stem Cell ; 10(1): 33-46, 2012 Jan 06.
Article in English | MEDLINE | ID: mdl-22226354

ABSTRACT

The Polycomb Group (PcG) of chromatin modifiers regulates pluripotency and differentiation. Mammalian genomes encode multiple homologs of the Polycomb repressive complex 1 (PRC1) components, including five orthologs of the Drosophila Polycomb protein (Cbx2, Cbx4, Cbx6, Cbx7, and Cbx8). We have identified Cbx7 as the primary Polycomb ortholog of PRC1 complexes in embryonic stem cells (ESCs). The expression of Cbx7 is downregulated during ESC differentiation, preceding the upregulation of Cbx2, Cbx4, and Cbx8, which are directly repressed by Cbx7. Ectopic expression of Cbx7 inhibits differentiation and X chromosome inactivation and enhances ESC self-renewal. Conversely, Cbx7 knockdown induces differentiation and derepresses lineage-specific markers. In a functional screen, we identified the miR-125 and miR-181 families as regulators of Cbx7 that are induced during ESC differentiation. Ectopic expression of these miRNAs accelerates ESC differentiation via regulation of Cbx7. These observations establish a critical role for Cbx7 and its regulatory miRNAs in determining pluripotency.


Subject(s)
Cell Differentiation/physiology , Down-Regulation/physiology , Embryonic Stem Cells/metabolism , MicroRNAs/metabolism , Repressor Proteins/biosynthesis , Repressor Proteins/metabolism , Animals , Antigens, Differentiation/biosynthesis , Antigens, Differentiation/genetics , Cell Line, Tumor , Chromosomes, Human, X/genetics , Chromosomes, Human, X/metabolism , Embryonic Stem Cells/cytology , Humans , Ligases , Mice , MicroRNAs/genetics , Mitochondrial Membrane Transport Proteins , Polycomb Repressive Complex 1 , Polycomb-Group Proteins , Repressor Proteins/genetics , Ubiquitin-Protein Ligases , X Chromosome Inactivation/physiology
14.
Nature ; 464(7289): 792-6, 2010 Apr 01.
Article in English | MEDLINE | ID: mdl-20228790

ABSTRACT

Demethylation at distinct lysine residues in histone H3 by lysine-specific demethylase 1 (LSD1) causes either gene repression or activation. As a component of co-repressor complexes, LSD1 contributes to target gene repression by removing mono- and dimethyl marks from lysine 4 of histone H3 (H3K4). In contrast, during androgen receptor (AR)-activated gene expression, LSD1 removes mono- and dimethyl marks from lysine 9 of histone H3 (H3K9). Yet, the mechanisms that control this dual specificity of demethylation are unknown. Here we show that phosphorylation of histone H3 at threonine 6 (H3T6) by protein kinase C beta I (PKCbeta(I), also known as PRKCbeta) is the key event that prevents LSD1 from demethylating H3K4 during AR-dependent gene activation. In vitro, histone H3 peptides methylated at lysine 4 and phosphorylated at threonine 6 are no longer LSD1 substrates. In vivo, PKCbeta(I) co-localizes with AR and LSD1 on target gene promoters and phosphorylates H3T6 after androgen-induced gene expression. RNA interference (RNAi)-mediated knockdown of PKCbeta(I) abrogates H3T6 phosphorylation, enhances demethylation at H3K4, and inhibits AR-dependent transcription. Activation of PKCbeta(I) requires androgen-dependent recruitment of the gatekeeper kinase protein kinase C (PKC)-related kinase 1 (PRK1). Notably, increased levels of PKCbeta(I) and phosphorylated H3T6 (H3T6ph) positively correlate with high Gleason scores of prostate carcinomas, and inhibition of PKCbeta(I) blocks AR-induced tumour cell proliferation in vitro and cancer progression of tumour xenografts in vivo. Together, our data establish that androgen-dependent kinase signalling leads to the writing of the new chromatin mark H3T6ph, which in consequence prevents removal of active methyl marks from H3K4 during AR-stimulated gene expression.


Subject(s)
Histone Demethylases/metabolism , Histones/chemistry , Histones/metabolism , Protein Kinase C/metabolism , Androgens/metabolism , Androgens/pharmacology , Animals , Cell Division/drug effects , Cell Line, Tumor , Chromatin/metabolism , Gene Expression Regulation/drug effects , Gene Knockdown Techniques , Histone Demethylases/antagonists & inhibitors , Humans , Lysine/chemistry , Lysine/metabolism , Male , Methylation/drug effects , Mice , Mice, Nude , Mice, SCID , Phosphorylation/drug effects , Phosphothreonine/metabolism , Promoter Regions, Genetic/genetics , Prostatic Neoplasms/enzymology , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Protein Kinase C/antagonists & inhibitors , Protein Kinase C/deficiency , Protein Kinase C/genetics , Protein Kinase C beta , Signal Transduction/drug effects , Xenograft Model Antitumor Assays
15.
Nat Cell Biol ; 10(1): 53-60, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18066052

ABSTRACT

Posttranslational modifications of histones such as methylation, acetylation and phosphorylation regulate chromatin structure and gene expression. Here we show that protein-kinase-C-related kinase 1 (PRK1) phosphorylates histone H3 at threonine 11 (H3T11) upon ligand-dependent recruitment to androgen receptor target genes. PRK1 is pivotal to androgen receptor function because PRK1 knockdown or inhibition impedes androgen receptor-dependent transcription. Blocking PRK1 function abrogates androgen-induced H3T11 phosphorylation and inhibits androgen-induced demethylation of histone H3. Moreover, serine-5-phosphorylated RNA polymerase II is no longer observed at androgen receptor target promoters. Phosphorylation of H3T11 by PRK1 accelerates demethylation by the Jumonji C (JmjC)-domain-containing protein JMJD2C. Thus, phosphorylation of H3T11 by PRK1 establishes a novel chromatin mark for gene activation, identifying PRK1 as a gatekeeper of androgen receptor-dependent transcription. Importantly, levels of PRK1 and phosphorylated H3T11 correlate with Gleason scores of prostate carcinomas. Finally, inhibition of PRK1 blocks proliferation of androgen receptor-induced tumour cell proliferation, making PRK1 a promising therapeutic target.


Subject(s)
Chromatin/metabolism , Gene Expression Regulation , Histones/metabolism , Threonine/metabolism , Animals , Blotting, Western , Cell Line , Cell Line, Tumor , Cell Proliferation , Chromatin Immunoprecipitation , Humans , Immunohistochemistry , Male , Phosphorylation , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Protein Binding , Protein Kinase C/genetics , Protein Kinase C/metabolism , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Tissue Array Analysis , Transcription, Genetic , Transcriptional Activation
16.
Genes Dev ; 19(23): 2912-24, 2005 Dec 01.
Article in English | MEDLINE | ID: mdl-16322561

ABSTRACT

Most transcriptional repression pathways depend on the targeted deacetylation of histone tails. In this report, we characterize NIR, a novel transcriptional corepressor with inhibitor of histone acetyltransferase (INHAT) activity. NIR (Novel INHAT Repressor) is ubiquitously expressed throughout embryonic development and adulthood. NIR is a potent transcriptional corepressor that is not blocked by histone deacetylase inhibitors and is capable of silencing both basal and activator-driven transcription. NIR directly binds to nucleosomes and core histones and prevents acetylation by histone acetyltransferases, thus acting as a bona fide INHAT. Using a tandem affinity purification approach, we identified the tumor suppressor p53 as a NIR-interacting partner. Association of p53 and NIR was verified in vitro and in vivo. Upon recruitment by p53, NIR represses transcription of both p53-dependent reporters and endogenous target genes. Knock-down of NIR by RNA interference significantly enhances histone acetylation at p53-regulated promoters. Moreover, p53-dependent apoptosis is robustly increased upon depletion of NIR. In summary, our findings describe NIR as a novel INHAT that plays an important role in the control of p53 function.


Subject(s)
Histone Acetyltransferases/antagonists & inhibitors , Repressor Proteins/physiology , Transcription, Genetic , Tumor Suppressor Protein p53/genetics , Animals , Apoptosis , Gene Expression Regulation , Humans , Mice , Mice, Knockout , Promoter Regions, Genetic , Protein Interaction Mapping , RNA Interference , Repressor Proteins/metabolism , Tumor Suppressor Protein p53/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL