Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Space Sci Rev ; 220(4): 37, 2024.
Article in English | MEDLINE | ID: mdl-38756703

ABSTRACT

The Lunar Environment heliospheric X-ray Imager (LEXI) is a wide field-of-view soft X-ray telescope developed to study solar wind-magnetosphere coupling. LEXI is part of the Blue Ghost 1 mission comprised of 10 payloads to be deployed on the lunar surface. LEXI monitors the dayside magnetopause position and shape as a function of time by observing soft X-rays (0.1-2 keV) emitted from solar wind charge-exchange between exospheric neutrals and high charge-state solar wind plasma in the dayside magnetosheath. Measurements of the shape and position of the magnetopause are used to test temporal models of meso- and macro-scale magnetic reconnection. To image the boundary, LEXI employs lobster-eye optics to focus X-rays to a microchannel plate detector with a 9.1×∘9.1∘ field of view.

2.
J Geophys Res Space Phys ; 126(3): e2020JA028816, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33777610

ABSTRACT

The LEXI and SMILE missions will provide soft X-ray images of the Earth's magnetosheath and cusps after their anticipated launch in 2023 and 2024, respectively. The IBEX mission showed the potential of an Energetic Neutral Atom (ENA) instrument to image dayside magnetosheath and cusps, albeit over the long hours required to raster an image with a single pixel imager. Thus, it is timely to discuss the two imaging techniques and relevant science topics. We simulate soft X-ray and low-ENA images that might be observed by a virtual spacecraft during two interesting solar wind scenarios: a southward turning of the interplanetary magnetic field and a sudden enhancement of the solar wind dynamic pressure. We employ the OpenGGCM global magnetohydrodynamics model and a simple exospheric neutral density model for these calculations. Both the magnetosheath and the cusps generate strong soft X-rays and ENA signals that can be used to extract the locations and motions of the bow shock and magnetopause. Magnetopause erosion corresponds closely to the enhancement of dayside reconnection rate obtained from the OpenGGCM model, indicating that images can be used to understand global-scale magnetopause reconnection. When dayside imagers are installed with high-ENA inner-magnetosphere and FUV/UV aurora imagers, we can trace the solar wind energy flow from the bow shock to the magnetosphere and then to the ionosphere in a self-standing manner without relying upon other observatories. Soft X-ray and/or ENA imagers can also unveil the dayside exosphere density structure and its response to space weather.

3.
Article in English | MEDLINE | ID: mdl-32818007

ABSTRACT

AIMS: Most models identify the X-ray bright North Polar Spur (NPS) with a hot interstellar (IS) bubble in the Sco-Cen star-forming region at ≃130 pc. An opposite view considers the NPS as a distant structure associated with Galactic nuclear outflows. Constraints on the NPS distance can be obtained by comparing the foreground IS gas column inferred from X-ray absorption to the distribution of gas and dust along the line of sight. Absorbing columns towards shadowing molecular clouds simultaneously constrain the CO-H2 conversion factor. METHODS: We derived the columns of X-ray absorbing matter N Habs from spectral fitting of dedicated XMM-Newton observations towards the NPS southern terminus (l II ≃ 29°, b II ≃ +5 to +11°). The distribution of the IS matter was obtained from absorption lines in stellar spectra, 3D dust maps and emission data, including high spatial resolution CO measurements recorded for this purpose. RESULTS: N Habs varies from ≃ 4.3 to ≃ 1.3 × 1021 cm-2 along the 19 fields. Relationships between X-ray brightness, absorbing column and hardness ratio demonstrate a brightness decrease with latitude governed by increasing absorption. The comparison with absorption data, local and large-scale dust maps rules out a NPS near side closer than 300 pc. The correlation between N Habs and the reddening increases with the sightline length from 300 pc to 4 kpc and is the tightest with Planck τ 353GHz -based reddening, suggesting a much larger distance. N(H)/E(B-V) τ ≃ 4.1 × 1021 cm-2 mag-1, close to Fermi-Planck determinations. N Habs absolute values are compatible with HI-CO clouds at -5 ≤ V LSR ≤ +25 to +45 km s-1 and a NPS potentially far beyond the Local Arm. A shadow cast by a b=+9° molecular cloud constrains X CO in that direction to ≤ 1.0 × 1020 cm-2 K-1 km-1 s. The average X CO over the fields is ≤ 0.75 × 1020 cm-2 K-1 km-1 s.

4.
Nature ; 512(7513): 171-3, 2014 Aug 14.
Article in English | MEDLINE | ID: mdl-25079321

ABSTRACT

The solar neighbourhood is the closest and most easily studied sample of the Galactic interstellar medium, an understanding of which is essential for models of star formation and galaxy evolution. Observations of an unexpectedly intense diffuse flux of easily absorbed 1/4-kiloelectronvolt X-rays, coupled with the discovery that interstellar space within about a hundred parsecs of the Sun is almost completely devoid of cool absorbing gas, led to a picture of a 'local cavity' filled with X-ray-emitting hot gas, dubbed the local hot bubble. This model was recently challenged by suggestions that the emission could instead be readily produced within the Solar System by heavy solar-wind ions exchanging electrons with neutral H and He in interplanetary space, potentially removing the major piece of evidence for the local existence of million-degree gas within the Galactic disk. Here we report observations showing that the total solar-wind charge-exchange contribution is approximately 40 per cent of the 1/4-keV flux in the Galactic plane. The fact that the measured flux is not dominated by charge exchange supports the notion of a million-degree hot bubble extending about a hundred parsecs from the Sun.

5.
Science ; 343(6177): 1330-3, 2014 Mar 21.
Article in English | MEDLINE | ID: mdl-24578533

ABSTRACT

Mass accretion onto black holes releases energy in the form of radiation and outflows. Although the radiative flux cannot substantially exceed the Eddington limit, at which the outgoing radiation pressure impedes the inflow of matter, it remains unclear whether the kinetic energy flux is bounded by this same limit. Here, we present the detection of a radio-optical structure, powered by outflows from a non-nuclear black hole. Its accretion disk properties indicate that this black hole is less than 100 solar masses. The optical-infrared line emission implies an average kinetic power of 3 × 10(40) erg second(-1), higher than the Eddington luminosity of the black hole. These results demonstrate kinetic power exceeding the Eddington limit over a sustained period, which implies greater ability to influence the evolution of the black hole's environment.

6.
Nature ; 503(7477): 477-8, 2013 Nov 28.
Article in English | MEDLINE | ID: mdl-24284725
SELECTION OF CITATIONS
SEARCH DETAIL
...