Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
Mol Genet Metab Rep ; 38: 101051, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38469093

ABSTRACT

Riboflavin transporter deficiency (RTD) is a neurodegenerative disorder that presents from infancy to adulthood with a progressive axonal neuropathy characterized by a variety of neurologic symptoms including hearing loss, weakness, bulbar palsy, and respiratory insufficiency. Pathogenic variants in SLC52A2 and SLC52A3 are implicated in the pathogenesis of RTD type 2 and 3, respectively. Early identification of this disorder is critical, as it is treatable with riboflavin supplementation. We describe a 16-year-old female with a phenotype consistent with RTD3 found to have a novel heterozygous SLC52A3 variant. Though RTD is typically considered an autosomal recessive condition, her heterozygous variant was thought to be disease causing after further genetic analysis and given her improvement in response to riboflavin supplementation. This case highlights the importance of reinterpretation of genetic testing, particularly when there is a high clinical suspicion for disease.

2.
J Clin Med ; 13(4)2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38398235

ABSTRACT

Background: Spinal muscular atrophy (SMA) has a remarkable impact on function and participation. Subsequently, the caregivers of individuals with SMA are impacted as well. Providers and the SMA community should be aware of the presence of and likely expectations for the existence of caregiver burden. Methods: The Assessment of Caregiver Experience with Neuromuscular Disease (ACEND) quantifies caregivers' perceptions of function and quality of life pertaining to time, finance and emotion. Analyses were conducted among SMA types and ambulatory and ventilatory status. Participants with SMA had varying ranges of function and were on pharmaceutical treatment. Total ACEND score, longitudinal change in total ACEND score, total quality of life (QOL) score, change in total QOL score and subdomains for QOL, including time, emotion and finance, were all explored. Results: Overall, the ACEND demonstrated discriminant validity and some observed trends. Total ACEND scores improved for caregivers of those with SMA 2, remained stable longitudinally for caregivers of those with SMA 1 and 3 and were not influenced by ventilation status. The caregivers of individuals with SMA 1 had the lowest total quality of life (QOL) score, as did the caregivers of non-ambulatory individuals and those requiring assisted ventilation. Longitudinally, there were no changes in total QOL between caregivers of individuals with different SMA types or ambulatory or ventilation status. There were some differences in emotional needs, but no differences in financial impact between the caregivers of individuals with different types of SMA or ambulatory and ventilatory status. Conclusions: With this information enlightening the presence of caregiver burden and expected changes in burden with pharmaceutical treatment, providers, third party payors and the SMA community at large can better assist, equip and empower those providing the necessary assistance to enable the lives of those with SMA.

3.
EBioMedicine ; 99: 104894, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38086156

ABSTRACT

BACKGROUND: X-linked myotubular myopathy (XLMTM) is a rare, life-threatening congenital muscle disease caused by mutations in the MTM1 gene that result in profound muscle weakness, significant respiratory insufficiency, and high infant mortality. There is no approved disease-modifying therapy for XLMTM. Resamirigene bilparvovec (AT132; rAAV8-Des-hMTM1) is an investigational adeno-associated virus (AAV8)-mediated gene replacement therapy designed to deliver MTM1 to skeletal muscle cells and achieve long-term correction of XLMTM-related muscle pathology. The clinical trial ASPIRO (NCT03199469) investigating resamirigene bilparvovec in XLMTM is currently paused while the risk:benefit balance associated with this gene therapy is further investigated. METHODS: Muscle biopsies were taken before treatment and 24 and 48 weeks after treatment from ten boys with XLMTM in a clinical trial of resamirigene bilparvovec (ASPIRO; NCT03199469). Comprehensive histopathological analysis was performed. FINDINGS: Baseline biopsies uniformly showed findings characteristic of XLMTM, including small myofibres, increased internal or central nucleation, and central aggregates of organelles. Biopsies taken at 24 weeks post-treatment showed marked improvement of organelle localisation, without apparent increases in myofibre size in most participants. Biopsies taken at 48 weeks, however, did show statistically significant increases in myofibre size in all nine biopsies evaluated at this timepoint. Histopathological endpoints that did not demonstrate statistically significant changes with treatment included the degree of internal/central nucleation, numbers of triad structures, fibre type distributions, and numbers of satellite cells. Limited (predominantly mild) treatment-associated inflammatory changes were seen in biopsy specimens from five participants. INTERPRETATION: Muscle biopsies from individuals with XLMTM treated with resamirigene bilparvovec display statistically significant improvement in organelle localisation and myofibre size during a period of substantial improvements in muscle strength and respiratory function. This study identifies valuable histological endpoints for tracking treatment-related gains with resamirigene bilparvovec, as well as endpoints that did not show strong correlation with clinical improvement in this human study. FUNDING: Astellas Gene Therapies (formerly Audentes Therapeutics, Inc.).


Subject(s)
Muscle, Skeletal , Myopathies, Structural, Congenital , Male , Infant , Humans , Muscle, Skeletal/pathology , Genetic Therapy/adverse effects , Genetic Therapy/methods , Muscle Weakness , Muscle Strength , Myopathies, Structural, Congenital/genetics , Myopathies, Structural, Congenital/therapy , Myopathies, Structural, Congenital/pathology
4.
J Neuromuscul Dis ; 11(1): 201-212, 2024.
Article in English | MEDLINE | ID: mdl-37980682

ABSTRACT

BACKGROUND: Becker muscular dystrophy is an X-linked, genetic disorder causing progressive degeneration of skeletal and cardiac muscle, with a widely variable phenotype. OBJECTIVE: A 3-year, longitudinal, prospective dataset contributed by patients with confirmed Becker muscular dystrophy was analyzed to characterize the natural history of this disorder. A better understanding of the natural history is crucial to rigorous therapeutic trials. METHODS: A cohort of 83 patients with Becker muscular dystrophy (5-75 years at baseline) were followed for up to 3 years with annual assessments. Muscle and pulmonary function outcomes were analyzed herein. Age-stratified statistical analysis and modeling were conducted to analyze cross-sectional data, time-to-event data, and longitudinal data to characterize these clinical outcomes. RESULTS: Deletion mutations of dystrophin exons 45-47 or 45-48 were most common. Subgroup analysis showed greater pairwise association between motor outcomes at baseline than association between these outcomes and age. Stronger correlations between outcomes for adults than for those under 18 years were also observed. Using cross-sectional binning analysis, a ceiling effect was seen for North Star Ambulatory Assessment but not for other functional outcomes. Longitudinal analysis showed a decline in percentage predicted forced vital capacity over the life span. There was relative stability or improved median function for motor functional outcomes through childhood and adolescence and decreasing function with age thereafter. CONCLUSIONS: There is variable progression of outcomes resulting in significant heterogeneity of the clinical phenotype of Becker muscular dystrophy. Disease progression is largely manifest in adulthood. There are implications for clinical trial design revealed by this longitudinal analysis of a Becker natural history dataset.


Subject(s)
Muscular Dystrophy, Duchenne , Adult , Adolescent , Humans , Child , Muscular Dystrophy, Duchenne/genetics , Prospective Studies , Cross-Sectional Studies , Phenotype , Myocardium
5.
Lancet Neurol ; 22(12): 1125-1139, 2023 12.
Article in English | MEDLINE | ID: mdl-37977713

ABSTRACT

BACKGROUND: X-linked myotubular myopathy is a rare, life-threatening, congenital muscle disease observed mostly in males, which is caused by mutations in MTM1. No therapies are approved for this disease. We aimed to assess the safety and efficacy of resamirigene bilparvovec, which is an adeno-associated viral vector serotype 8 delivering human MTM1. METHODS: ASPIRO is an open-label, dose-escalation trial at seven academic medical centres in Canada, France, Germany, and the USA. We included boys younger than 5 years with X-linked myotubular myopathy who required mechanical ventilator support. The trial was initially in two parts. Part 1 was planned as a safety and dose-escalation phase in which participants were randomly allocated (2:1) to either the first dose level (1·3 × 1014 vector genomes [vg]/kg bodyweight) of resamirigene bilparvovec or delayed treatment, then, for later participants, to either a higher dose (3·5 × 1014 vg/kg bodyweight) of resamirigene bilparvovec or delayed treatment. Part 2 was intended to confirm the dose selected in part 1. Resamirigene bilparvovec was administered as a single intravenous infusion. An untreated control group comprised boys who participated in a run-in study (INCEPTUS; NCT02704273) or those in the delayed treatment cohort who did not receive any dose. The primary efficacy outcome was the change from baseline to week 24 in hours of daily ventilator support. After three unexpected deaths, dosing at the higher dose was stopped and the two-part feature of the study design was eliminated. Because of changes to the study design during its implementation, analyses were done on an as-treated basis and are deemed exploratory. All treated and control participants were included in the safety analysis. The trial is registered with ClinicalTrials.gov, NCT03199469. Outcomes are reported as of Feb 28, 2022. ASPIRO is currently paused while deaths in dosed participants are investigated. FINDINGS: Between Aug 3, 2017 and June 1, 2021, 30 participants were screened for eligibility, of whom 26 were enrolled; six were allocated to the lower dose, 13 to the higher dose, and seven to delayed treatment. Of the seven children whose treatment was delayed, four later received the higher dose (n=17 total in the higher dose cohort), one received the lower dose (n=7 total in the lower dose cohort), and two received no dose and joined the control group (n=14 total, including 12 children from INCEPTUS). Median age at dosing or enrolment was 12·1 months (IQR 10·0-30·9; range 9·5-49·7) in the lower dose cohort, 31·1 months (16·0-64·7; 6·8-72·7) in the higher dose cohort, and 18·7 months (10·1-31·5; 5·9-39·3) in the control cohort. Median follow-up was 46·1 months (IQR 41·0-49·5; range 2·1-54·7) for lower dose participants, 27·6 months (24·6-29·1; 3·4-41·0) for higher dose participants, and 28·3 months (9·7-46·9; 5·7-32·7) for control participants. At week 24, lower dose participants had an estimated 77·7 percentage point (95% CI 40·22 to 115·24) greater reduction in least squares mean hours per day of ventilator support from baseline versus controls (p=0·0002), and higher dose participants had a 22·8 percentage point (6·15 to 39·37) greater reduction from baseline versus controls (p=0·0077). One participant in the lower dose cohort and three in the higher dose cohort died; at the time of death, all children had cholestatic liver failure following gene therapy (immediate causes of death were sepsis; hepatopathy, severe immune dysfunction, and pseudomonal sepsis; gastrointestinal haemorrhage; and septic shock). Three individuals in the control group died (haemorrhage presumed related to hepatic peliosis; aspiration pneumonia; and cardiopulmonary failure). INTERPRETATION: Most children with X-linked myotubular myopathy who received MTM1 gene replacement therapy had important improvements in ventilator dependence and motor function, with more than half of dosed participants achieving ventilator independence and some attaining the ability to walk independently. Investigations into the risk for underlying hepatobiliary disease in X-linked myotubular myopathy, and the need for monitoring of liver function before gene replacement therapy, are ongoing. FUNDING: Astellas Gene Therapies.


Subject(s)
Myopathies, Structural, Congenital , Sepsis , Male , Child , Humans , Infant , Child, Preschool , France , Genetic Therapy/adverse effects , Myopathies, Structural, Congenital/genetics , Myopathies, Structural, Congenital/therapy , Germany , Treatment Outcome
6.
Muscle Nerve ; 68(2): 157-170, 2023 08.
Article in English | MEDLINE | ID: mdl-37409780

ABSTRACT

INTRODUCTION/AIMS: NURTURE (NCT02386553) is an open-label study of nusinersen in children (two SMN2 copies, n = 15; three SMN2 copies, n = 10) who initiated treatment in the presymptomatic stage of spinal muscular atrophy (SMA). A prior analysis after ~3 y showed benefits on survival, respiratory outcomes, motor milestone achievement, and a favorable safety profile. An additional 2 y of follow-up (data cut: February 15, 2021) are reported. METHODS: The primary endpoint is time to death or respiratory intervention (≥6 h/day continuously for ≥7 days or tracheostomy). Secondary outcomes include overall survival, motor function, and safety. RESULTS: Median age of children was 4.9 (3.8-5.5) y at last visit. No children have discontinued the study or treatment. All were alive. No additional children utilized respiratory intervention (defined per primary endpoint) since the prior data cut. Children with three SMN2 copies achieved all World Health Organization (WHO) motor milestones, with all but one milestone in one child within normal developmental timeframes. All 15 children with two SMN2 copies achieved sitting without support, 14/15 walking with assistance, and 13/15 walking alone. Mean Hammersmith Functional Motor Scale Expanded total scores showed continued improvement. Subgroups with two SMN2 copies, minimum baseline compound muscle action potential amplitude ≥2 mV, and no baseline areflexia had better motor and nonmotor outcomes versus all children with two SMN2 copies. DISCUSSION: These results demonstrate the value of early treatment, durability of treatment effect, and favorable safety profile after ~5 y of nusinersen treatment. Inclusion/exclusion criteria and baseline characteristics should be considered when interpreting presymptomatic SMA trial data.


Subject(s)
Muscular Atrophy, Spinal , Spinal Muscular Atrophies of Childhood , Child , Humans , Muscular Atrophy, Spinal/drug therapy , Oligonucleotides/therapeutic use , Walking , Spinal Muscular Atrophies of Childhood/drug therapy
7.
J Neuromuscul Dis ; 10(3): 337-348, 2023.
Article in English | MEDLINE | ID: mdl-36872785

ABSTRACT

BACKGROUND: Ambulatory individuals with spinal muscular atrophy experience weakness and impairments of speed and endurance. This leads to decreased motor skill performance required for daily living including transitioning from floor to stand, climbing stairs, and traversing short and community distances. Motor function improvements have been reported in individuals receiving nusinersen, but changes in timed functional tests (TFTs) which assess shorter distance walking and transitions have not been well documented. OBJECTIVE: To evaluate changes in TFT performance over the course of nusinersen treatment in ambulatory individuals with SMA and identify potential factors [age, SMN2 copy number, BMI, Hammersmith Functional Motor Scale Expanded (HFMSE score), Peroneal Compound Motor Action Potential (CMAP) amplitude] associated with TFT performance. METHODS: Nineteen ambulatory participants receiving nusinersen were followed from 2017 through 2019 (range: 0-900 days, mean 624.7 days, median 780 days); thirteen of 19 (mean age = 11.5 years) completed TFTs. The 10-meter walk/run test, time-to-rise from supine, time-to-rise from sitting, 4-stair climb, 6-minute walk test (6MWT), Hammersmith Expanded and peroneal CMAP were assessed at each visit. Linear mixed-effects models were used to evaluate unadjusted and adjusted changes in these outcomes over time. RESULTS: Apart from time to rise from sitting and from supine, all TFTs were found to improve over the course of treatment after adjusting for baseline age and BMI. CONCLUSIONS: Improvement in TFTs over time in patients with SMA treated with nusinersen suggests that shorter TFTs may have value to assess individuals with SMA who have or later gain ambulatory function during treatment.


Subject(s)
Muscular Atrophy, Spinal , Spinal Muscular Atrophies of Childhood , Humans , Child , Muscular Atrophy, Spinal/drug therapy , Muscular Atrophy, Spinal/complications , Oligonucleotides/therapeutic use , Motor Skills
8.
J Neuromuscul Dis ; 10(3): 389-404, 2023.
Article in English | MEDLINE | ID: mdl-36911944

ABSTRACT

BACKGROUND: Spinal muscular atrophy (SMA) is a neuromuscular disorder arising from biallelic non-functional survival motor neuron 1 (SMN1) genes with variable copies of partially functional SMN2 gene. Intrathecal onasemnogene abeparvovec administration, at fixed, low doses, may enable treatment of heavier patients ineligible for weight-based intravenous dosing. OBJECTIVE: STRONG (NCT03381729) assessed the safety/tolerability and efficacy of intrathecal onasemnogene abeparvovec for sitting, nonambulatory SMA patients. METHODS: Sitting, nonambulatory SMA patients (biallelic SMN1 loss, three SMN2 copies, aged 6-<60 months) received a single dose of intrathecal onasemnogene abeparvovec. Patients were enrolled sequentially into one of three (low, medium, and high) dose cohorts and stratified into two groups by age at dosing: younger (6-<24 months) and older (24-<60 months). Primary endpoints included safety/tolerability, independent standing ≥3 seconds (younger group), and change in Hammersmith Functional Motor Scale Expanded (HFMSE) from baseline (older group) compared with historic controls. RESULTS: Thirty-two patients were enrolled and completed the study (medium dose, n = 25). All patients had one or more treatment-emergent adverse events, with one serious and related to treatment (transaminase elevations). No deaths were reported. One of 13 patients (7.7%) in the younger group treated with the medium dose achieved independent standing. At Month 12 for the older group receiving the medium dose, change from baseline in HFMSE was significantly improved compared with the SMA historic control population (P < 0.01). CONCLUSIONS: Intrathecal onasemnogene abeparvovec was safe and well-tolerated. Older patients treated with the medium dose demonstrated increases in HFMSE score greater than commonly observed in natural history.


Subject(s)
Muscular Atrophy, Spinal , Spinal Muscular Atrophies of Childhood , Humans , Spinal Muscular Atrophies of Childhood/therapy , Sitting Position , Muscular Atrophy, Spinal/drug therapy , Motor Neurons , Genetic Therapy
9.
JAMA Neurol ; 79(10): 1005-1014, 2022 10 01.
Article in English | MEDLINE | ID: mdl-36036925

ABSTRACT

Importance: Corticosteroidal anti-inflammatory drugs are widely prescribed but long-term use shows adverse effects that detract from patient quality of life. Objective: To determine if vamorolone, a structurally unique dissociative steroidal anti-inflammatory drug, is able to retain efficacy while reducing safety concerns with use in Duchenne muscular dystrophy (DMD). Design, Setting, and Participants: Randomized, double-blind, placebo- and prednisone-controlled 24-week clinical trial, conducted from June 29, 2018, to February 24, 2021, with 24 weeks of follow-up. This was a multicenter study (33 referral centers in 11 countries) and included boys 4 to younger than 7 years of age with genetically confirmed DMD not previously treated with corticosteroids. Interventions: The study included 4 groups: placebo; prednisone, 0.75 mg/kg per day; vamorolone, 2 mg/kg per day; and vamorolone, 6 mg/kg per day. Main Outcomes and Measures: Study outcomes monitored (1) efficacy, which included motor outcomes (primary: time to stand from supine velocity in the vamorolone, 6 mg/kg per day, group vs placebo; secondary: time to stand from supine velocity [vamorolone, 2 mg/kg per day], 6-minute walk distance, time to run/walk 10 m [vamorolone, 2 and 6 mg/kg per day]; exploratory: NorthStar Ambulatory Assessment, time to climb 4 stairs) and (2) safety, which included growth, bone biomarkers, and a corticotropin (ACTH)-challenge test. Results: Among the 133 boys with DMD enrolled in the study (mean [SD] age, 5.4 [0.9] years), 121 were randomly assigned to treatment groups, and 114 completed the 24-week treatment period. The trial met the primary end point for change from baseline to week 24 time to stand velocity for vamorolone, 6 mg/kg per day (least-squares mean [SE] velocity, 0.05 [0.01] m/s vs placebo -0.01 [0.01] m/s; 95% CI, 0.02-0.10; P = .002) and the first 4 sequential secondary end points: time to stand velocity, vamorolone, 2 mg/kg per day, vs placebo; 6-minute walk test, vamorolone, 6 mg/kg per day, vs placebo; 6-minute walk test, vamorolone, 2 mg/kg per day, vs placebo; and time to run/walk 10 m velocity, vamorolone, 6 mg/kg per day, vs placebo. Height percentile declined in prednisone-treated (not vamorolone-treated) participants (change from baseline [SD]: prednisone, -1.88 [8.81] percentile vs vamorolone, 6 mg/kg per day, +3.86 [6.16] percentile; P = .02). Bone turnover markers declined with prednisone but not with vamorolone. Boys with DMD at baseline showed low ACTH-stimulated cortisol and high incidence of adrenal insufficiency. All 3 treatment groups led to increased adrenal insufficiency. Conclusions and Relevance: In this pivotal randomized clinical trial, vamorolone was shown to be effective and safe in the treatment of boys with DMD over a 24-week treatment period. Vamorolone may be a safer alternative than prednisone in this disease, in which long-term corticosteroid use is the standard of care. Trial Registration: ClinicalTrials.gov Identifier: NCT03439670.


Subject(s)
Adrenal Insufficiency , Muscular Dystrophy, Duchenne , Adrenal Cortex Hormones , Adrenal Insufficiency/chemically induced , Adrenal Insufficiency/drug therapy , Adrenocorticotropic Hormone/therapeutic use , Anti-Inflammatory Agents/adverse effects , Biomarkers , Child, Preschool , Double-Blind Method , Humans , Hydrocortisone/therapeutic use , Male , Muscular Dystrophy, Duchenne/drug therapy , Prednisone/therapeutic use , Quality of Life , Treatment Outcome
10.
J Neuromuscul Dis ; 9(4): 503-516, 2022.
Article in English | MEDLINE | ID: mdl-35694931

ABSTRACT

BACKGROUND: X-linked myotubular myopathy (XLMTM) is a life-threatening congenital myopathy that, in most cases, is characterized by profound muscle weakness, respiratory failure, need for mechanical ventilation and gastrostomy feeding, and early death. OBJECTIVE: We aimed to characterize the neuromuscular, respiratory, and extramuscular burden of XLMTM in a prospective, longitudinal study. METHODS: Thirty-four participants < 4 years old with XLMTM and receiving ventilator support enrolled in INCEPTUS, a prospective, multicenter, non-interventional study. Disease-related adverse events, respiratory and motor function, feeding, secretions, and quality of life were assessed. RESULTS: During median (range) follow-up of 13.0 (0.5, 32.9) months, there were 3 deaths (aspiration pneumonia; cardiopulmonary failure; hepatic hemorrhage with peliosis) and 61 serious disease-related events in 20 (59%) participants, mostly respiratory (52 events, 18 participants). Most participants (80%) required permanent invasive ventilation (>16 hours/day); 20% required non-invasive support (6-16 hours/day). Median age at tracheostomy was 3.5 months (95% CI: 2.5, 9.0). Thirty-three participants (97%) required gastrostomy. Thirty-one (91%) participants had histories of hepatic disease and/or prospectively experienced related adverse events or laboratory or imaging abnormalities. CHOP INTEND scores ranged from 19-52 (mean: 35.1). Seven participants (21%) could sit unsupported for≥30 seconds (one later lost this ability); none could pull to stand or walk with or without support. These parameters remained static over time across the INCEPTUS cohort. CONCLUSIONS: INCEPTUS confirmed high medical impact, static respiratory, motor and feeding difficulties, and early death in boys with XLMTM. Hepatobiliary disease was identified as an under-recognized comorbidity. There are currently no approved disease-modifying treatments.


Subject(s)
Myopathies, Structural, Congenital , Quality of Life , Child, Preschool , Genetic Therapy , Humans , Longitudinal Studies , Male , Myopathies, Structural, Congenital/genetics , Myopathies, Structural, Congenital/therapy , Prospective Studies
11.
JAMA ; 327(15): 1456-1468, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35381069

ABSTRACT

Importance: Corticosteroids improve strength and function in boys with Duchenne muscular dystrophy. However, there is uncertainty regarding the optimum regimen and dosage. Objective: To compare efficacy and adverse effects of the 3 most frequently prescribed corticosteroid regimens in boys with Duchenne muscular dystrophy. Design, Setting, and Participants: Double-blind, parallel-group randomized clinical trial including 196 boys aged 4 to 7 years with Duchenne muscular dystrophy who had not previously been treated with corticosteroids; enrollment occurred between January 30, 2013, and September 17, 2016, at 32 clinic sites in 5 countries. The boys were assessed for 3 years (last participant visit on October 16, 2019). Interventions: Participants were randomized to daily prednisone (0.75 mg/kg) (n = 65), daily deflazacort (0.90 mg/kg) (n = 65), or intermittent prednisone (0.75 mg/kg for 10 days on and then 10 days off) (n = 66). Main Outcomes and Measures: The global primary outcome comprised 3 end points: rise from the floor velocity (in rise/seconds), forced vital capacity (in liters), and participant or parent global satisfaction with treatment measured by the Treatment Satisfaction Questionnaire for Medication (TSQM; score range, 0 to 100), each averaged across all study visits after baseline. Pairwise group comparisons used a Bonferroni-adjusted significance level of .017. Results: Among the 196 boys randomized (mean age, 5.8 years [SD, 1.0 years]), 164 (84%) completed the trial. Both daily prednisone and daily deflazacort were more effective than intermittent prednisone for the primary outcome (P < .001 for daily prednisone vs intermittent prednisone using a global test; P = .017 for daily deflazacort vs intermittent prednisone using a global test) and the daily regimens did not differ significantly (P = .38 for daily prednisone vs daily deflazacort using a global test). The between-group differences were principally attributable to rise from the floor velocity (0.06 rise/s [98.3% CI, 0.03 to 0.08 rise/s] for daily prednisone vs intermittent prednisone [P = .003]; 0.06 rise/s [98.3% CI, 0.03 to 0.09 rise/s] for daily deflazacort vs intermittent prednisone [P = .017]; and -0.004 rise/s [98.3% CI, -0.03 to 0.02 rise/s] for daily prednisone vs daily deflazacort [P = .75]). The pairwise comparisons for forced vital capacity and TSQM global satisfaction subscale score were not statistically significant. The most common adverse events were abnormal behavior (22 [34%] in the daily prednisone group, 25 [38%] in the daily deflazacort group, and 24 [36%] in the intermittent prednisone group), upper respiratory tract infection (24 [37%], 19 [29%], and 24 [36%], respectively), and vomiting (19 [29%], 17 [26%], and 15 [23%]). Conclusions and Relevance: Among patients with Duchenne muscular dystrophy, treatment with daily prednisone or daily deflazacort, compared with intermittent prednisone alternating 10 days on and 10 days off, resulted in significant improvement over 3 years in a composite outcome comprising measures of motor function, pulmonary function, and satisfaction with treatment; there was no significant difference between the 2 daily corticosteroid regimens. The findings support the use of a daily corticosteroid regimen over the intermittent prednisone regimen tested in this study as initial treatment for boys with Duchenne muscular dystrophy. Trial Registration: ClinicalTrials.gov Identifier: NCT01603407.


Subject(s)
Glucocorticoids , Muscular Dystrophy, Duchenne , Prednisone , Child , Child, Preschool , Female , Glucocorticoids/administration & dosage , Glucocorticoids/adverse effects , Glucocorticoids/therapeutic use , Humans , Male , Muscular Dystrophy, Duchenne/drug therapy , Prednisone/administration & dosage , Prednisone/adverse effects , Prednisone/therapeutic use , Pregnenediones/adverse effects
12.
JAMA Netw Open ; 5(1): e2144178, 2022 01 04.
Article in English | MEDLINE | ID: mdl-35076703

ABSTRACT

Importance: Vamorolone is a synthetic steroidal drug with potent anti-inflammatory properties. Initial open-label, multiple ascending dose-finding studies of vamorolone among boys with Duchenne muscular dystrophy (DMD) found significant motor function improvement after 6 months treatment in higher-dose (ie, ≥2.0 mg/kg/d) groups. Objective: To investigate outcomes after 30 months of open-label vamorolone treatment. Design, Setting, and Participants: This nonrandomized controlled trial was conducted by the Cooperative International Neuromuscular Research Group at 11 US and non-US study sites. Participants were 46 boys ages 4.5 to 7.5 years with DMD who completed the 6-month dose-finding study. Data were analyzed from July 2020 through November 2021. Interventions: Participants were enrolled in a 24-month, long-term extension (LTE) study with vamorolone dose escalated to 2.0 or 6.0 mg/kg/d. Main Outcomes and Measures: Change in time-to-stand (TTSTAND) velocity from dose-finding baseline to end of LTE study was the primary outcome. Efficacy assessments included timed function tests, 6-minute walk test, and NorthStar Ambulatory Assessment (NSAA). Participants with DMD treated with glucocorticoids from the Duchenne Natural History Study (DNHS) and NorthStar United Kingdom (NSUK) Network were matched and compared with participants in the LTE study receiving higher doses of vamorolone. Results: Among 46 boys with DMD who completed the dose-finding study, 41 boys (mean [SD] age, 5.33 [0.96] years) completed the LTE study. Among 21 participants treated with higher-dose (ie, ≥2.0 mg/kg/d) vamorolone consistently throughout the 6-month dose-finding and 24-month LTE studies with data available at 30 months, there was a decrease in mean (SD) TTSTAND velocity from baseline to 30 months (0.206 [0.070] rises/s vs 0.189 (0.124) rises/s), which was not a statistically significant change (-0.011 rises/s; CI, -0.068 to 0.046 rises/s). There were no statistically significant differences between participants receiving higher-dose vamorolone and matched participants in the historical control groups receiving glucocorticoid treatment (75 patients in DNHS and 110 patients in NSUK) over a 2-year period in NSAA total score change (0.22 units vs NSUK; 95% CI, -4.48 to 4.04]; P = .92), body mass index z score change (0.002 vs DNHS SD/mo; 95% CI, -0.006 to 0.010; P = .58), or timed function test change. Vamorolone at doses up to 6.0 mg/kg/d was well tolerated, with 5 of 46 participants discontinuing prematurely and for reasons not associated with study drug. Participants in the DNHS treated with glucocorticoids had significant growth delay in comparison with participants treated with vamorolone who had stable height percentiles (0.37 percentile/mo; 95% CI, 0.23 to 0.52 percentile/mo) over time. Conclusions and Relevance: This study found that vamorolone treatment was not associated with a change in TTSTAND velocity from baseline to 30 months among boys with DMD aged 4 to 7 years at enrollment. Vamorolone was associated with maintenance of muscle strength and function up to 30 months, similar to standard of care glucocorticoid therapy, and improved height velocity compared with growth deceleration associated with glucocorticoid treatment, suggesting that vamorolone may be an attractive candidate for treatment of DMD. Trial Registration: ClinicalTrials.gov Identifier: NCT03038399.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Muscular Dystrophy, Duchenne/drug therapy , Pregnadienediols/therapeutic use , Body Height/drug effects , Child , Child, Preschool , Glucocorticoids/therapeutic use , Humans , Male , Muscle Strength/drug effects , Muscular Dystrophy, Duchenne/physiopathology , Treatment Outcome , United Kingdom
13.
CNS Drugs ; 36(2): 181-190, 2022 02.
Article in English | MEDLINE | ID: mdl-35080757

ABSTRACT

BACKGROUND: Nusinersen is approved for the treatment of spinal muscular atrophy. The most common approved dosing regimen is four intrathecal loading doses of nusinersen 12 mg; the first three are administered at 14-day intervals followed by a fourth dose 30 days later, and then 12-mg maintenance doses are administered every 4 months thereafter. Interruption of nusinersen treatment in the maintenance dosing phase might occur for a number of clinical reasons. OBJECTIVE: The objective of this report is to describe dosing regimens that allow for the most rapid restoration of steady-state concentrations of nusinersen in the cerebrospinal fluid (CSF) following a treatment interruption during maintenance dosing. METHODS: Population pharmacokinetic models using integrated pharmacokinetic data from ten nusinersen clinical trials that included a broad range of participants with spinal muscular atrophy treated with intrathecal nusinersen were used to investigate different durations of treatment interruptions during maintenance treatment. Potential dosing regimens for re-initiation of nusinersen were evaluated, with the goal of achieving the quickest restoration of steady-state nusinersen CSF concentrations without exceeding maximal CSF exposures observed during the initial loading period. RESULTS: Our pharmacokinetic modeling indicates the following regimen will lead to optimal restoration of nusinersen CSF levels after treatment interruption: two doses of nusinersen should be administered at 14-day intervals following treatment interruptions of ≥ 8 to < 16 months since the last dose, and three doses of nusinersen at 14-day intervals for treatment interruptions of ≥ 16 to < 40 months since the last maintenance dose, with subsequent maintenance dosing every 4 months in both instances. After treatment interruptions of ≥ 40 months, the full loading regimen will rapidly restore nusinersen CSF levels. CONCLUSIONS: Prolonged treatment interruptions lead to suboptimal CSF levels of nusinersen. The optimal regimen to restore nusinersen CSF levels depends on the interval since the last maintenance dose was administered.


Nusinersen is a drug used to treat people of all ages who have spinal muscular atrophy. Nusinersen is injected with a thin needle into the lower back, a procedure known as a lumbar puncture. People initially receive three doses of nusinersen 12 mg each 14 days apart. They receive a fourth dose 1 month later, and then injections every 4 months (known as maintenance dosing). This treatment plan allows nusinersen to build up to effective levels in the fluid surrounding the spinal cord and brain. Some people may miss dose(s) or may stop nusinersen treatment at some point during maintenance dosing and then may want to continue treatment. This study used information from ten clinical trials to find out the best way to restart treatment to build up nusinersen to effective levels. People with a treatment break of ≥ 8 to < 16 months since the last dose need two doses of nusinersen at 14-day intervals before receiving maintenance dosing. People with a treatment break of ≥ 16 to < 40 months since the last dose need three doses of nusinersen at 14-day intervals before receiving maintenance dosing. If people stopped treatment for ≥ 40 months, they would need four doses before starting maintenance treatment. Results from this study showed that the number of doses that people needed before starting maintenance treatment depended on how long the treatment break was.


Subject(s)
Dose-Response Relationship, Drug , Drug Monitoring/methods , Maintenance Chemotherapy/methods , Muscular Atrophy, Spinal , Oligonucleotides , Drug Administration Schedule , Duration of Therapy , Humans , Injections, Spinal/methods , Models, Biological , Muscular Atrophy, Spinal/cerebrospinal fluid , Muscular Atrophy, Spinal/drug therapy , Oligonucleotides/administration & dosage , Oligonucleotides/cerebrospinal fluid , Oligonucleotides/pharmacokinetics , Oligonucleotides, Antisense/administration & dosage , Oligonucleotides, Antisense/cerebrospinal fluid , Oligonucleotides, Antisense/pharmacokinetics , Treatment Outcome
15.
Muscle Nerve ; 64(3): 285-292, 2021 09.
Article in English | MEDLINE | ID: mdl-34105177

ABSTRACT

INTRODUCTION/AIMS: Duchenne muscular dystrophy (DMD) is caused by mutations in the DMD gene resulting in the absence of dystrophin. Casimersen is a phosphorodiamidate morpholino oligomer designed to bypass frameshift DMD mutations and produce internally truncated, yet functional, dystrophin protein in patients amenable to exon 45 skipping. Our primary study objective was to evaluate safety and tolerability of casimersen; the secondary objective was to characterize the plasma pharmacokinetics. METHODS: This multicenter, phase 1/2 trial enrolled 12 participants (aged 7-21 years, who had limited ambulation or were nonambulatory) and comprised a 12-week, double-blind dose titration, then an open-label extension for up to 132 weeks. During dose titration, participants were randomized 2:1 to weekly casimersen infusions at escalating doses of 4, 10, 20, and 30 mg/kg (≥2 weeks per dose), or placebo. RESULTS: Participants received casimersen for a mean 139.6 weeks. Treatment-emergent adverse events (TEAEs) occurred in all casimersen- and placebo-treated participants and were mostly mild (over 91.4%) and unrelated to casimersen or its dose. There were no deaths, dose reductions, abnormalities in laboratory parameters or vital signs, or casimersen-related serious AEs. Casimersen plasma concentration increased with dose and declined similarly for all dose levels over 24 hours postinfusion. All pharmacokinetic parameters were similar at weeks 7 and 60. DISCUSSION: Casimersen was well tolerated in participants with DMD amenable to exon 45 skipping. Most TEAEs were mild, nonserious, and unrelated to casimersen. Plasma exposure was dose proportional with no suggestion of plasma accumulation. These results support further studies of casimersen in this population.


Subject(s)
Dystrophin/genetics , Muscular Dystrophy, Duchenne/genetics , Oligonucleotides/adverse effects , Adolescent , Child , Double-Blind Method , Exons , Humans , Male , Mutation , Oligonucleotides/administration & dosage , Oligonucleotides/pharmacokinetics , Young Adult
16.
Lancet Neurol ; 20(4): 284-293, 2021 04.
Article in English | MEDLINE | ID: mdl-33743238

ABSTRACT

BACKGROUND: Spinal muscular atrophy type 1 is a motor neuron disorder resulting in death or the need for permanent ventilation by age 2 years. We aimed to evaluate the safety and efficacy of onasemnogene abeparvovec (previously known as AVXS-101), a gene therapy delivering the survival motor neuron gene (SMN), in symptomatic patients (identified through clinical examination) with infantile-onset spinal muscular atrophy. METHODS: STR1VE was an open-label, single-arm, single-dose, phase 3 trial done at 12 hospitals and universities in the USA. Eligible patients had to be younger than 6 months and have spinal muscular atrophy with biallelic SMN1 mutations (deletion or point mutations) and one or two copies of SMN2. Patients received a one-time intravenous infusion of onasemnogene abeparvovec (1·1 × 1014 vector genomes per kg) for 30-60 min. During the outpatient follow-up, patients were assessed once per week, beginning at day 7 post-infusion for 4 weeks and then once per month until the end of the study (age 18 months or early termination). Coprimary efficacy outcomes were independent sitting for 30 s or longer (Bayley-III item 26) at the 18 month of age study visit and survival (absence of death or permanent ventilation) at age 14 months. Safety was assessed through evaluation of adverse events, concomitant medication usage, physical examinations, vital sign assessments, cardiac assessments, and laboratory evaluation. Primary efficacy endpoints for the intention-to-treat population were compared with untreated infants aged 6 months or younger (n=23) with spinal muscular atrophy type 1 (biallelic deletion of SMN1 and two copies of SMN2) from the Pediatric Neuromuscular Clinical Research (PNCR) dataset. This trial is registered with ClinicalTrials.gov, NCT03306277 (completed). FINDINGS: From Oct 24, 2017, to Nov 12, 2019, 22 patients with spinal muscular atrophy type 1 were eligible and received onasemnogene abeparvovec. 13 (59%, 97·5% CI 36-100) of 22 patients achieved functional independent sitting for 30 s or longer at the 18 month of age study visit (vs 0 of 23 patients in the untreated PNCR cohort; p<0·0001). 20 patients (91%, 79-100]) survived free from permanent ventilation at age 14 months (vs 6 [26%], 8-44; p<0·0001 in the untreated PNCR cohort). All patients who received onasemnogene abeparvovec had at least one adverse event (most common was pyrexia). The most frequently reported serious adverse events were bronchiolitis, pneumonia, respiratory distress, and respiratory syncytial virus bronchiolitis. Three serious adverse events were related or possibly related to the treatment (two patients had elevated hepatic aminotransferases, and one had hydrocephalus). INTERPRETATION: Results from this multicentre trial build on findings from the phase 1 START study by showing safety and efficacy of commercial grade onasemnogene abeparvovec. Onasemnogene abeparvovec showed statistical superiority and clinically meaningful responses when compared with observations from the PNCR natural history cohort. The favourable benefit-risk profile shown in this study supports the use of onasemnogene abeparvovec for treatment of symptomatic patients with genetic or clinical characteristics predictive of infantile-onset spinal muscular atrophy type 1. FUNDING: Novartis Gene Therapies.


Subject(s)
Biological Products/therapeutic use , Genetic Therapy/methods , Recombinant Fusion Proteins/therapeutic use , Spinal Muscular Atrophies of Childhood/drug therapy , Spinal Muscular Atrophies of Childhood/genetics , Child, Preschool , Female , Humans , Infant , Male , Survival of Motor Neuron 2 Protein/genetics , Treatment Outcome
17.
Neurotherapeutics ; 18(2): 1127-1136, 2021 04.
Article in English | MEDLINE | ID: mdl-33624184

ABSTRACT

This phase 2, double-blind, placebo-controlled, hypothesis-generating study evaluated the effects of oral reldesemtiv, a fast skeletal muscle troponin activator, in patients with spinal muscular atrophy (SMA). Patients ≥ 12 years of age with type II, III, or IV SMA were randomized into 2 sequential, ascending reldesemtiv dosing cohorts (cohort 1: 150 mg bid or placebo [2:1]; cohort 2: 450 mg bid or placebo [2:1]). The primary objective was to determine potential pharmacodynamic effects of reldesemtiv on 8 outcome measures in SMA, including 6-minute walk distance (6MWD) and maximum expiratory pressure (MEP). Changes from baseline to weeks 4 and 8 were determined. Pharmacokinetics and safety were also evaluated. Patients were randomized to reldesemtiv 150 mg, 450 mg, or placebo (24, 20, and 26, respectively). The change from baseline in 6MWD was greater for reldesemtiv 450 mg than for placebo at weeks 4 and 8 (least squares [LS] mean difference, 35.6 m [p = 0.0037] and 24.9 m [p = 0.058], respectively). Changes from baseline in MEP at week 8 on reldesemtiv 150 and 450 mg were significantly greater than those on placebo (LS mean differences, 11.7 [p = 0.038] and 13.2 cm H2O [p = 0.03], respectively). For 6MWD and MEP, significant changes from placebo were seen in the highest reldesemtiv peak plasma concentration quartile (Cmax > 3.29 µg/mL; LS mean differences, 43.3 m [p = 0.010] and 28.8 cm H2O [p = 0.0002], respectively). Both dose levels of reldesemtiv were well tolerated. Results suggest reldesemtiv may offer clinical benefit and support evaluation in larger SMA patient populations.


Subject(s)
Drugs, Investigational/therapeutic use , Muscle, Skeletal/drug effects , Muscular Atrophy, Spinal/drug therapy , Pyridines/therapeutic use , Pyrimidines/therapeutic use , Pyrroles/therapeutic use , Troponin I/metabolism , Adolescent , Adult , Aged , Child , Cohort Studies , Double-Blind Method , Drugs, Investigational/chemistry , Drugs, Investigational/pharmacology , Female , Humans , Male , Middle Aged , Muscle, Skeletal/metabolism , Pyridines/chemistry , Pyridines/pharmacology , Pyrimidines/chemistry , Pyrimidines/pharmacology , Pyrroles/chemistry , Pyrroles/pharmacology , Troponin I/agonists , Walk Test/methods , Young Adult
18.
Neurology ; 96(3): 114-122, 2021 01 19.
Article in English | MEDLINE | ID: mdl-33144515

ABSTRACT

OBJECTIVE: To update the 2016 formal consensus-based guidance for the management of myasthenia gravis (MG) based on the latest evidence in the literature. METHODS: In October 2013, the Myasthenia Gravis Foundation of America appointed a Task Force to develop treatment guidance for MG, and a panel of 15 international experts was convened. The RAND/UCLA appropriateness method was used to develop consensus recommendations pertaining to 7 treatment topics. In February 2019, the international panel was reconvened with the addition of one member to represent South America. All previous recommendations were reviewed for currency, and new consensus recommendations were developed on topics that required inclusion or updates based on the recent literature. Up to 3 rounds of anonymous e-mail votes were used to reach consensus, with modifications to recommendations between rounds based on the panel input. A simple majority vote (80% of panel members voting "yes") was used to approve minor changes in grammar and syntax to improve clarity. RESULTS: The previous recommendations for thymectomy were updated. New recommendations were developed for the use of rituximab, eculizumab, and methotrexate as well as for the following topics: early immunosuppression in ocular MG and MG associated with immune checkpoint inhibitor treatment. CONCLUSION: This updated formal consensus guidance of international MG experts, based on new evidence, provides recommendations to clinicians caring for patients with MG worldwide.


Subject(s)
Immunosuppressive Agents/therapeutic use , Myasthenia Gravis/therapy , Antibodies, Monoclonal, Humanized/therapeutic use , Consensus , Disease Management , Humans , Immune Checkpoint Inhibitors/therapeutic use , Methotrexate/therapeutic use , Myasthenia Gravis/drug therapy , Myasthenia Gravis/surgery , Rituximab/therapeutic use , Thymectomy
19.
Pediatr Neurol Briefs ; 34: 15, 2020 Dec 04.
Article in English | MEDLINE | ID: mdl-33304089

ABSTRACT

Investigators from the NIH performed a longitudinal, prospective, natural history study looking at patients with COL6-related dystrophies (COL6-RDs) and LAMA2-related dystrophies (LAMA2-RDs), the two most common congenital muscular dystrophies (CMDs).

20.
Am J Hum Genet ; 107(6): 1078-1095, 2020 12 03.
Article in English | MEDLINE | ID: mdl-33217308

ABSTRACT

The myosin-directed chaperone UNC-45B is essential for sarcomeric organization and muscle function from Caenorhabditis elegans to humans. The pathological impact of UNC-45B in muscle disease remained elusive. We report ten individuals with bi-allelic variants in UNC45B who exhibit childhood-onset progressive muscle weakness. We identified a common UNC45B variant that acts as a complex hypomorph splice variant. Purified UNC-45B mutants showed changes in folding and solubility. In situ localization studies further demonstrated reduced expression of mutant UNC-45B in muscle combined with abnormal localization away from the A-band towards the Z-disk of the sarcomere. The physiological relevance of these observations was investigated in C. elegans by transgenic expression of conserved UNC-45 missense variants, which showed impaired myosin binding for one and defective muscle function for three. Together, our results demonstrate that UNC-45B impairment manifests as a chaperonopathy with progressive muscle pathology, which discovers the previously unknown conserved role of UNC-45B in myofibrillar organization.


Subject(s)
Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/physiology , Molecular Chaperones/genetics , Molecular Chaperones/physiology , Muscular Diseases/genetics , Mutation, Missense , Adolescent , Adult , Alleles , Animals , Caenorhabditis elegans , Female , Genetic Variation , Humans , Loss of Function Mutation , Male , Muscle, Skeletal/pathology , Myofibrils , Myosins , Sarcomeres/metabolism , Sequence Analysis, RNA , Transgenes , Exome Sequencing , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...