Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Environ Sci Pollut Res Int ; 31(3): 4705-4720, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38110673

ABSTRACT

Livestock farming has exerted intense environmental pressure on our planet. The high emissions to the environment and the high demands of resources for the production process have encouraged the search for decarbonization and circularity in the livestock sector. In this context, the objective of this study was to evaluate and compare the environmental performance of two different uses for biogas generated in the anaerobic digestion of animal waste, either for electricity generation or biomethane. For this purpose, a life cycle assessment approach was applied to evaluate the potential of anaerobic digestion as a management technology for three different livestock wastes, related to beef cattle, dairy, and sheep in the Brazilian animal production context. The results suggest that the treatment scenarios focusing on biomethane generation were able to mitigate the highest percentage of damages (77 to 108%) in the global warming category when compared to the scenarios without the use of anaerobic digestion (3.00·102 to 3.71·103 kgCO2 eq) or in the perspective of electricity generation (mitigation of 74 to 96%). In terms of freshwater eutrophication, the generation of electricity (- 2.17·10-2 to 2.31·10-3 kg P eq) is more favorable than the purification of biogas to biomethane (- 1.73·10-2 to 2.44·10-3 kg P eq), due to the loss of methane in the upgrading process. In terms of terrestrial ecotoxicity, all scenarios are very similar, with negative values (- 1.19·101 to - 7.17·102 kg 1,4-DCB) due to the benefit of nutrient recovery, especially nitrogen, associated with the use of digestate as fertilizer, which was one of the critical points in all scenarios. Based on these results, it is evident that proper management of all stages of the treatment life cycle is the key to decarbonization and circularity in livestock waste management. The biogas use does not present different effects on the environmental performance of the scenarios studied, demonstrating that the purpose should be chosen according to the needs of each plant or management system.


Subject(s)
Livestock , Waste Management , Cattle , Animals , Sheep , Brazil , Biofuels , Waste Management/methods , Life Cycle Stages , Anaerobiosis
2.
Environ Sci Pollut Res Int ; 29(60): 89889-89898, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36367646

ABSTRACT

In this paper, we explore the applications of bacteriophages and the advantages of using these viruses to control undesirable organisms in wastewater treatment plants. Based on this, this paper reviewed the literature on the subject by performing a bibliometric and scientometric analysis of articles published in peer-reviewed journals through 2021. We obtained 806 publications, of which 40% were published in the last 5 years, demonstrating an increase in interest in the subject. These articles analyzed, bacteriophages in treatment plants were strongly linked to bacteria such as Escherichia coli and related to disinfection, inactivation, sewage, and wastewater, in addition, biocontrol studies have gained prominence in recent years, particularly due to the resistance of microorganisms to antibiotics. Studies have shown that bacteriophages have great potential for application in treatment systems to control unwanted processes and act as valuable economic and environmental tools to improve the efficiency of various treatment technologies. Although these viruses have already been studied in various applications to optimize treatment plant processes, technology transfer remains a challenge due to the limitations of the technique-such as physicochemical factors related to the environment-and the complexity of biological systems. The research focusing on application strategies in conjunction with molecular biology techniques can expand this study area, enabling the discovery of new bacteriophages.


Subject(s)
Bacteriophages , Wastewater
3.
Environ Sci Pollut Res Int ; 29(49): 73599-73621, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36071358

ABSTRACT

Improper disposal of animal waste is responsible for several environmental problems, causing eutrophication of lakes and rivers, nutrient overload in the soil, and the spread of pathogenic organisms. Despite the potential to cause adverse ecological damage, animal waste can be a valuable source of resources if incorporated into a circular concept. In this sense, new approaches focused on recovery and reuse as substitutes for traditional processes based on removing contaminants in animal manure have gained attention from the scientific community. Based on this, the present work reviewed the literature on the subject, performing a bibliometric and scientometric analysis of articles published in peer-reviewed journals between 1991 and 2021. Of the articles analyzed, the main issues addressed were nitrogen and phosphorus recovery, energy generation, high-value-added products, and water reuse. The energy use of livestock waste stands out since it is characterized as a consolidated solution, unlike other routes still being developed, presenting the economic barrier as the main limiting factor. Analyzing the trend of technological development through the S curve, it was possible to verify that the circular economy in the management of animal waste will enter the maturation phase as of 2036 and decline in 2056, which demonstrates opportunities for the sector's development, where animal waste can be an economic agent, promoting a cleaner and more viable product for a sustainable future.


Subject(s)
Manure , Waste Management , Animals , Bibliometrics , Nitrogen/metabolism , Phosphorus/metabolism , Soil , Water
4.
Water Environ Res ; 94(9): e10780, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36058650

ABSTRACT

The anaerobic ammonium oxidation (anammox) process has attracted significant attention as an economic, robustness, and sustainable method for the treatment of nitrogen (N)-rich wastewater. Anammox bacteria (AnAOB) coexist with other microorganisms, and particularly with ammonia-oxidizing bacteria (AOB) and/or heterotrophic bacteria (HB), in symbiosis in favor of the substrate requirement (ammonium and nitrite) of the AnAOB being supplied by these other organisms. The dynamics of these microbial communities have a significant effect on the N-removal performance, but the corresponding metabolic pathways are still not fully understood. These processes involve many common metabolites that may act as key factors to control the symbiotic interactions between these organisms, to maximize N-removal efficiency from wastewater. Therefore, this work overviews the current state of knowledge about the metabolism of these microorganisms including key enzymes and intermediate metabolites and summarizes already reported experiences based on the employment of certain metabolites for the improvement of N-removal using anammox-based processes. PRACTITIONER POINTS: Approaches knowledge about the biochemistry and metabolic pathways involved in anammox-based processes. Some molecular tools can be used to determine enzymatic activity, serving as an optimization in nitrogen removal processes. Enzymatic evaluation allied to the physical-chemical and biomolecular analysis of the nitrogen removal processes expands the application in different effluents.


Subject(s)
Ammonium Compounds , Wastewater , Ammonium Compounds/metabolism , Anaerobic Ammonia Oxidation , Bacteria/metabolism , Bioreactors/microbiology , Nitrogen/metabolism , Oxidation-Reduction , Wastewater/chemistry
5.
J Environ Manage ; 301: 113825, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34571473

ABSTRACT

The application of the circular economy concept should utilize the cycles of nature to preserve materials, energy and nutrients for economic use. A full-scale pig farm plant was developed and validated, showing how it is possible to integrate a circular economy concept into a wastewater treatment system capable of recovering energy, nutrients and enabling water reuse. A low-cost swine wastewater treatment system consisting of several treatment modules such as solid-liquid separation, anaerobic digestion, biological nitrogen removal by nitrification/denitrification and physicochemical phosphorus removal and recovery was able to generate 1880.6 ± 1858.5 kWh d-1 of energy, remove 98.6% of nitrogen and 89.7% of phosphorus present in the swine manure. In addition, it was possible to produce enough fertilizer to fertilize 350 ha per year, considering phosphorus and potassium. In addition, the effluent after the chemical phosphorus removal can be safely used in farm cleaning processes or disposed of in water bodies. Thus, the proposed process has proven to be an environmentally superior swine waste management technology, with a positive impact on water quality and ensuring environmental sustainability in intensive swine production.


Subject(s)
Manure , Phosphorus , Anaerobiosis , Animals , Nitrogen/analysis , Nutrients , Swine
6.
Sci Total Environ ; 786: 147390, 2021 Sep 10.
Article in English | MEDLINE | ID: mdl-33964770

ABSTRACT

Organic carbon can affect the biological nitrogen removal process since the Anammox, heterotrophic and denitrifying bacteria have different affinities and feedback in relation to carbon/nitrogen ratio. Therefore, we reviewed the wastewater carbon concentration, its biodegradability and bioavailability to choose the appropriate nitrogen removal process between conventional (nitrification-denitrification) and Anammox-based process (i.e. integrated with the partial nitritation, nitritation, simultaneous partial nitrification and denitrification or partial-denitrification). This review will cover: (i) strategies to choose the best nitrogen removal route according to the wastewater characteristics in relation to the organic matter bioavailability and biodegradability; (ii) strategies to efficiently remove nitrogen and the remaining carbon from effluent in anammox-based process and its operating cost; (iii) an economic analysis to determine the operational costs of two-units Anammox-based process when compared with the commonly applied one-unit Anammox system (partial-nitritation-Anammox). On this review, a list of alternatives are summarized and explained for different nitrogen and biodegradable organic carbon concentrations, which are the main factors to determine the best treatment process, based on operational and economic terms. In summary, it depends on the wastewater carbon biodegradability, which implies in the wastewater treatment cost. Thus, to apply the conventional nitrification/denitrification process a CODb/N ratio higher than 3.5 is required to achieve full nitrogen removal efficiency. For an economic point of view, according to the analysis the minimum CODb/gN for successful nitrogen removal by nitrification/denitrification is 5.8 g. If ratios lower than 3.5 are applied, for successfully higher nitrogen removal rates and the economic feasibility of the treatment, Anammox-based routes can be applied to the wastewater treatment plant.


Subject(s)
Carbon , Nitrogen , Bioreactors , Denitrification , Nitrification , Oxidation-Reduction , Sewage , Wastewater
7.
Bioresour Technol ; 332: 125111, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33887557

ABSTRACT

This study investigated the phycoremediation process from swine digestate integrated with photosynthetic biomass and biogas production in the context of circular economy. Effects of total ammonia nitrogen (TAN) and pH on biomass productivity and nutrients removal, using a central rotational composite design, were evaluated. pH showed a significant effect on biomass productivity and phosphate removal. The strain Chlorella sorokiniana (LBA#39) was able to tolerate up to 1300 mg TAN L-1 at neutral pH, with maximum biomass productivity of 198 mg DW L-1 d-1 and removal of 90 and 70 (%) of phosphate and nitrogen, respectively. The biomass harvested after phycoremediation from digestate showed high content of volatile solids (95.4%) and proteins (59.5%). Biochemical methane potential (BMP) from microalgae monodigestion was 292 ± 10 mLNCH4 gVSadd-1. The use microalgae biomass addition in the biodigestion process increased up to 32.1% in biogas production. It is an attractive approach to integrating raw materials into existing agro-industrial facilities and improving biogas production, adopting the concept of circular economy and mitigating greenhouse gas emissions.


Subject(s)
Chlorella , Microalgae , Animals , Biofuels , Biomass , Nitrogen , Swine , Wastewater
8.
Bioresour Technol ; 328: 124837, 2021 May.
Article in English | MEDLINE | ID: mdl-33607449

ABSTRACT

The objective of this study was to evaluate the ethanol production by Wickerhamomyces sp. using soybean straw and hull hydrolysates obtained by subcritical water hydrolysis and, afterward, the biogas production using the fermented hydrolysates. Ethanol was produced using the straw and hull hydrolysates diluted and supplement with glucose, reaching 5.57 ± 0.01 g/L and 6.11 ± 0.11 g/L, respectively. The fermentation in a bioreactor with changing the pH to 7.0 allowed achieving maximum ethanol production of 4.03 and 3.60 g/L for straw and hull hydrolysates at 24 h, respectively. The biogas productions obtained for the fermented hydrolysates of straw with and without changing the pH were 739 ± 37 and 652 ± 34 NmL/gVSad, respectively. The fermented hydrolysate of hull without changing the pH presented 620 ± 26 NmL/gVSad. The soybean residues produced biofuels, indicating these residues show potential as raw material for renewable energy production.


Subject(s)
Biofuels , Glycine max , Fermentation , Hydrolysis , Water
9.
Bioresour Technol ; 319: 124158, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33007698

ABSTRACT

A collection of kinetic models to explore the bacteria pathway inhibition by high-ammonia during deammonification process was fitted. The main goal was to determine the substrate concentration to operate the deammonification with efficiency, performance and low impact to ANAMMOX and ammonia-oxidizing bacteria (AOB) by substrate. A new mathematical model was created to describe the deammonification behavior, since the empirical theoretical models showed inconsistent parameters to describe the process. The proposed model showed significant prediction to the estimable parameters and according to it, until 550 mg NH3-N L-1 no inhibitions by ammonia and nitrite were observed. However, concentrations higher than this promote the decrease on specific bacterial activity and nitrite accumulation, since it was not quickly consumed by the bacteria. The proposed model can be applied to predict microorganism affinity and inhibition by substrate over a wide range of ammonia concentrations (<900 mgNH3-N L-1) in reactors treating high-ammonia concentration swine wastewater.


Subject(s)
Bioreactors , Nitrogen , Ammonia , Animals , Nitrites , Oxidation-Reduction , Swine , Wastewater
10.
Microorganisms ; 8(12)2020 Dec 21.
Article in English | MEDLINE | ID: mdl-33371202

ABSTRACT

Hepatitis E virus (HEV) is an important enteric agent that can circulate in swine; it is excreted in manure, and of zoonotic interest. The present study investigated, by RT-qPCR, the circulation of HEV in swine manure from different types of pig farms (maternity, nursery, and grow-finish farms) in Santa Catarina State, the major pig production area of Brazil, and also evaluated the HEV removal efficiency of psychrophilic anaerobic biodigesters (PABs). While HEV was consistently detected in manure from grow-finish pig farms (>4 log HEV genome copies (GC) L-1), the virus was not detected in manure from maternity and nursery farms. These findings suggest a potential high biosafety status during primary-swine production, with a subsequent contamination in grow-finish production. The anaerobic biodigestion process reduced more than 2 log10 HEV GC in the processed swine manure. However, the virus concentration in final effluent remained high, with an average value of 3.85 log10 HEV GC L-1. Consequently, our results demonstrate that PABs can be a robust tool for effective inactivation of HEV, while reinforcing the need for sanitary surveillance and legislation of swine manure-derived biofertilizers, to avoid the spread of zoonotic enteric pathogens such as HEV.

11.
Article in English | MEDLINE | ID: mdl-32523940

ABSTRACT

We studied different pre-treatments of poultry litter aiming to add economic value to this residue. Strategies were applied to extract ammonium nitrogen with the aim of allowing its further use as fertilizer, and to promote the hydrolysis and solubilization of lignocellulosic components with the aim of facilitating its subsequent conversion to biogas. Ammonia extraction was performed by solubilization in water in a one-step process and by successive extraction steps (3 times 60 min). Successive extractions presented greater removal of total ammonia nitrogen than did one-step extraction, solubilizing about 36% of the ammonia in water. In parallel pre-treatment using ultrasound was performed to increase carbon bioavailability for anaerobic digestion. Using this tool, 24.7 g kg-1 of total organic carbon and 13.0 g kg-1 of total reducing sugars were solubilized, employing 10% dry mass sample amount, 100% amplitude ultrasound at frequency of 20 kHz amplitude and 2.5 min of treatment (energy input of 299 ± 7 kJ L-1; 3,822 ± 95 kJ kg-1). Anaerobic digestion of ultrassound pre-treated biomass was evaluated using a biological biogas production assay, and an increase of 10% of biogas production was obtained compared to untreated samples (147.9 and 163.0 mL g-1 for crude and pre-treated PL, respectively). The findings suggest that these are environmentally friendly and sustainable strategies to add economic value to poultry litter, reducing the environmental impacts of improper disposal.

12.
Bioresour Technol ; 311: 123521, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32438094

ABSTRACT

The performance of a deammonification reactor fed with increasing nitrogen loading rates (NLR) was evaluated. The digestate from a continuous stirred tank reactor (CSTR) treating sludge from a swine production unit was diluted to provide different ammonia concentrations. The biomass samples from the end of each experimental phase were analyzed for microorganism community evaluation. The results proved that deammonification system supported a NLR up to 3.27 ± 0.13 g N L-1 d-1 with nitrogen removal efficiency of 83%. The specific ammonia consumption rate (µNH3-N) did not decrease up to this NLR proving the stability of reactor performance. Anammox bacteria genus shifted along the experiment and at the end the predominant anammox bacteria found in the reactor was candidatus Brocadia. Finally, it was proved that a deammonification reactor for nitrogen removal from CSTR digestate could be easily controlled only by monitoring pH and dissolved oxygen.


Subject(s)
Nitrogen , Wastewater , Anaerobiosis , Animals , Bioreactors , Oxidation-Reduction , Sewage , Swine
13.
Article in English | MEDLINE | ID: mdl-32411682

ABSTRACT

Renewable energy can assist the management of the effects of population growth and rapid economic development on the sustainability of animal husbandry. The primary aim of renewable energy is to minimize the use of fossil fuels via the creation of environmentally friendly energy products from depleted fossil fuels. Digesters that treat swine manure are extensively used in treatment systems; and inclusion of swine carcasses can increase the organic loading rate (OLR) thereby improving biogas yield and productivity on farms. However, the characteristics of the components including animal residues, proteins, lipids, remains of undigested feed items, antimicrobial drug residues, pathogenic microorganisms and nutrient contents, are complex and diverse. It is therefore necessary to manage the anaerobic process stability and digestate purification for subsequent use as fertilizer. Efficient methane recovery from residues rich in lipids is difficult because such residues are only slowly biodegradable. Pretreatment can promote solubilization of lipids and accelerate anaerobic digestion, and pretreatments can process the swine carcass before its introduction onto biodigesters. This review presents an overview of the anaerobic digestion of swine manure and carcasses. We analyze the characteristics of these residues, and we identify strategies to enhance biogas yield and process stability. We consider energy potential, co-digestion of swine manure and carcasses, physical, chemical, and biological pretreatment of biomass, sanitary aspects of swine manure and co-digestates and their recycling as fertilizers.

14.
Environ Technol ; 41(6): 682-690, 2020 Feb.
Article in English | MEDLINE | ID: mdl-30080477

ABSTRACT

The present study evaluated anaerobic co-digestion of swine manure and swine carcasses for biogas yield and inactivation/behaviour of pathogens purpose. Biochemical Methane Production tests were performed with samples containing ratios of 3, 7.5 and 15 kgcarcass m-3 manure. For pathogens inactivation experiments known amounts of model microrganisms (sensitive and resistant) were artificially inoculated in anaerobic reactors at 24°C and 37°C. The addition of carcass resulted in an increase until 119% of biogas yield compared to swine manure mono-digestion. Salmonella enterica, Escherichia coli and PCV2 were reduced >3log10 (24°C or 37°C) during 30 days. At 37°C, MS2 and PhiX-174 were reduced 3log10 and 1.8log10, respectively. At 24°C, MS2 reduced 1.5 log10 and PhiX-174 did not present any decay over 30 days. Considering the most resistant biomarkers pathogens, as bacteriophage, we recommend the swine carcasses pre-treatment, such as high temperatures, for sanitary security.


Subject(s)
Biofuels , Manure , Anaerobiosis , Animals , Bioreactors , Escherichia coli , Methane , Swine
15.
J Environ Manage ; 246: 19-26, 2019 Sep 15.
Article in English | MEDLINE | ID: mdl-31174028

ABSTRACT

Digestate from anaerobic processes still contains relatively high amount of total organic carbon (TOC) that can inhibit deammonification. In this sense, the present study investigated the interference of TOC in a lab-scale expanded granular sludge bed (EGSB) deammonification reactor treating digestate from a continuous stirred tank reactor (CSTR) swine sludge biodigester. Additionally, the microorganisms community was analyzed when the process was submitted to different operational conditions. The study was divided into three phases according to the C/N ratio (0, 0.5 and 1 for phase I, phase II and phase III, respectively). At phase I the average nitrogen removal efficiency (NRE) was 65 ±â€¯1.6%. With the increase of TOC in phase II (156 ±â€¯8.15 mg L-1) the average NRE was 61 ±â€¯9.8% which is statically equivalent to phase I (p < 0.05). On the other hand, at phase III (TOC was increased to 255 ±â€¯3.50 mg L-1) the NRE decreased to 50 ±â€¯3.9% which was 22% lower than in phase II. Stoichiometric coefficients of N2 was close to theoretical values during all experimental phases, while stoichiometric coefficient of N-NO3- was lower than theoretical values specially during phase III. Ca. Jettenia was favored when the reactor was fed with digestate although its proportion decreased in phase III. Thus, at the conditions employed in the present study it is recommended to use a C/N ratio of 0.5 (TOC concentration around 156 mg L-1) to treat digestate by deammonification process, in order to not diminish anammox microorganisms abundance. Thereby, the microorganisms community can be modulated based on carbon and nitrogen loading rates of a deammonification reactor for swine manure treatment purpose.


Subject(s)
Bioreactors , Sewage , Animals , Bacteria , Manure , Nitrogen , Swine
16.
Bioresour Technol ; 288: 121588, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31176943

ABSTRACT

This study aimed to produce bioethanol using Spirulina platensis biomass and the use of saccharification and fermentation wastes of bioethanol production to produce biomethane. The potential for energy generation in each technological route was quantified. Both, the enzymatic hydrolysis of the microalgae polysaccharides and the fermentation process, presented efficiencies above 80%. The fermentation of the hydrolyzate into ethanol was possible without the addition of synthetic nutrients to the must. The direct conversion of Spirulina biomass to biomethane had an energy potential of 16,770 kJ.kg-1, while bioethanol production from the hydrolysed biomass presented 4,664 kJ.kg-1. However, the sum of the energy potential obtained by producing bioethanol followed by the production of biomethane with the saccharification and fermentation residues was 13,945 kJ.kg-1. Despite this, the same raw material was able to produce both biofuels, demonstrating that Spirulina microalgae is a promising alternative to contribute in the field of renewable energies.


Subject(s)
Microalgae , Spirulina , Biofuels , Biomass , Fermentation , Hydrolysis
17.
Bioresour Technol ; 266: 116-124, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29958149

ABSTRACT

Different pretreatments were evaluated on corn stalk (Zea mays) applied as a lignocellulosic source in anaerobic co-digestion with swine manure, using sulfuric acid (H2SO4) and hydrogen peroxide (H2O2) for biogas production purposes. Using H2SO4 we achieved a 75.1% removal of the hemicellulose fraction, in low acid concentrations (0.75% v.v-1). However, this technique inhibited the co-digestion process. Pretreatment with 12% of H2O2 (pH 11.5) increased the cellulose fraction by 73.4% and reduced the lignin content by 71.6%. This pretreatment is recommended for biogas production, as it increased the final volume of biogas by 22% and reduced the digestion time by one third. So, a promising alternative was obtained in order to facilitate the anaerobic digestion of the carbohydrates present in this biomass.


Subject(s)
Biofuels , Hydrogen Peroxide , Zea mays , Anaerobiosis , Animals , Manure , Methane , Swine
18.
Front Microbiol ; 8: 74, 2017.
Article in English | MEDLINE | ID: mdl-28197137

ABSTRACT

Enteric pathogens from biofertilizer can accumulate in the soil, subsequently contaminating water and crops. We evaluated the survival, percolation and leaching of model enteric pathogens in clay and sandy soils after biofertilization with swine digestate: PhiX-174, mengovirus (vMC0), Salmonella enterica Typhimurium and Escherichia coli O157:H7 were used as biomarkers. The survival of vMC0 and PhiX-174 in clay soil was significantly lower than in sandy soil (iT90 values of 10.520 ± 0.600 vs. 21.270 ± 1.100 and 12.040 ± 0.010 vs. 43.470 ± 1.300, respectively) and PhiX-174 showed faster percolation and leaching in sandy soil than clay soil (iT90 values of 0.46 and 2.43, respectively). S. enterica Typhimurium was percolated and inactivated more slowly than E. coli O157:H7 (iT90 values of 9.340 ± 0.200 vs. 6.620 ± 0.500 and 11.900 ± 0.900 vs. 10.750 ± 0.900 in clay and sandy soils, respectively), such that E. coli O157:H7 was transferred more quickly to the deeper layers of both soils evaluated (percolation). Our findings suggest that E. coli O157:H7 may serve as a useful microbial biomarker of depth contamination and leaching in clay and sandy soil and that bacteriophage could be used as an indicator of enteric pathogen persistence. Our study contributes to development of predictive models for enteric pathogen behavior in soils, and for potential water and food contamination associated with biofertilization, useful for risk management and mitigation in swine digestate recycling.

19.
Bioresour Technol ; 219: 21-28, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27474854

ABSTRACT

Appropriate enrichment of anaerobic microorganism's consortium is crucial for accurate biochemical methane potential (BMP) assays. An alternative method to produce and maintain a mesophilic methanogenic inoculum was demonstrated. Three sources of inoculum were mixed and acclimated for 857days in order to reach steady conditions (pH=7.90±0.46; VS/TS>50%; VFA/alkalinity=0.16±0.04gAcetic Acid/ [Formula: see text] ). Biogas yield >80% was obtained after 70days of inoculum acclimation in comparison to standard cellulose (>600mLN/gVS). Methanogen community analysis based on 16S rDNA of the inoculum revealed Archaea concentration of 3×10(12) gene copies/g (Methanobacteriales 8×10(10); Methanomicrobiales 8×10(10); and Methanosarcinales 4×10(11) gene copies/g). The proposed method for development and maintenance of microorganism enrichment inoculum demonstrates consistent BMP data which is a requirement for dependable prediction of biogas production at field scale operations.


Subject(s)
Acclimatization , Archaea/metabolism , Methane/metabolism , Temperature , Alkalies/analysis , Anaerobiosis , Archaea/genetics , Biofuels/microbiology , Bioreactors/microbiology , Cellulose/chemistry , DNA, Ribosomal/genetics , Fatty Acids, Volatile/analysis , Real-Time Polymerase Chain Reaction , Reference Standards
20.
J Environ Manage ; 168: 229-35, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26716354

ABSTRACT

As the fourth largest swine producer and exporter, Brazil has increased its participation in the global swine production market. Generally, these units concentrate a large number of animals and generate effluents that must be correctly managed to prevent environmental impacts, being anaerobic digestion is an interesting alternative for treating these effluents. The low-volatile solid concentration in the manure suggests the need for solid-liquid separation as a tool to improve the biogas generation capacity. This study aimed to determine the influence of simplified and inexpensive solid-liquid separation strategies (screening and settling) and the different manures produced during each swine production phase (gestating and farrowing sow houses, nursery houses and finishing houses) on biogas and methane yield. We collected samples in two gestating sow houses (GSH-a and GSH-b), two farrowing sow houses (FSH-a and FSH-b), a nursery house (NH) and a finishing house (FH). Biochemical methane potential (BMP) tests were performed according to international standard procedures. The settled sludge fraction comprised 20-30% of the raw manure volume, which comprises 40-60% of the total methane yield. The methane potential of the settled sludge fraction was approximately two times higher than the methane potential of the supernatant fraction. The biogas yield differed among the raw manures from different swine production phases (GSH-a 326.4 and GSH-b 577.1; FSH-a 860.1 and FSH-b 479.2; NH -970.2; FH 474.5 NmLbiogas.gVS(-1)). The differences were relative to the production phase (feed type and feeding techniques) and the management of the effluent inside the facilities (water management). Brazilian swine production has increased his participation in the global market, been the fourth producer and the fourth exporter. The segregation of swine production in multiple sites has increased its importance, due to the possibilities to have more specialized units. Generally, these units concentrate a large number of animals and generate effluents that must be correctly managed to avoid environmental impact. Due to the biodegradability of manure, anaerobic digestion is an interesting alternative to treat these effluents. The low volatile solid concentration in the swine manure suggests the need for solid-liquid separation as a tool to improve biogas generation capacity. The present study aimed to determine the influence of simplified and cheap solid-liquid separation strategies (based on screening and settling) and different manure of each swine production phases (gestating and farrowing sows houses, nursery houses and finishing houses) on biogas and methane yield. We collected samples in two gestating sows house (GSH-a and GSH-b), two farrowing sows house (FSH-a and FSH-b), a nursery house (NH) and a finishing house (FH). The Biochemical Methane Production (BMP) tests were performed according to international standard procedure (VDI 4630). The settled sludge fraction responds for 20-30% of raw manure volume, producing 40-60% of the total methane yield. The methane potential of settled sludge fraction was about 2 times higher than the supernatant fraction. There are differences on biogas yield between the raw manure of different swine production phases (GSH-a 326.4 and GSH-b 577.1; FSH-a 860.1 and FSH-b 479.2; NH 970.2; FH 474.5 NmLbiogas.gVS(-1)). The differences are relative to production phase (feed type, feeding techniques, etc.), but also the management of the effluent inside the facilities (water management).


Subject(s)
Biofuels , Bioreactors , Methane/biosynthesis , Anaerobiosis , Animals , Brazil , Manure , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...