Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Respir Res ; 19(1): 112, 2018 06 07.
Article in English | MEDLINE | ID: mdl-29879994

ABSTRACT

Although Th2 driven inflammation is present in COPD, it is not clearly elucidated which COPD patients are affected. Since periostin is associated with Th2 driven inflammation and inhaled corticosteroid (ICS)-response in asthma, it could function as a biomarker in COPD. The aim of this study was to analyze if serum periostin is elevated in COPD compared to healthy controls, if it is affected by smoking status, if it is linked to inflammatory cell counts in blood, sputum and endobronchial biopsies, and if periostin can predict ICS-response in COPD patients.Serum periostin levels were measured using Elecsys Periostin immunoassay. Correlations between periostin and inflammatory cell count in blood, sputum and endobronchial biopsies were analyzed. Additionally, the correlation between serum periostin levels and treatment responsiveness after 6 and 30 months was assessed using i.e. ΔFEV1% predicted, ΔCCQ score and ΔRV/TLC ratio. Forty-five COPD smokers, 25 COPD past-smokers, 22 healthy smokers and 23 healthy never-smokers were included. Linear regression analysis of serum periostin showed positive correlations age (B = 0.02, 95%CI 0.01-0.03) and FEV1% predicted (B = 0.01, 95%CI 0.01-0.02) in healthy smokers, but not in COPD patients In conclusion, COPD -smokers and -past-smokers have significantly higher periostin levels compared to healthy smokers, yet periostin is not suitable as a biomarker for Th2-driven inflammation or ICS-responsiveness in COPD.


Subject(s)
Cell Adhesion Molecules/blood , Pulmonary Disease, Chronic Obstructive/blood , Smoking/blood , Th2 Cells/metabolism , Adult , Aged , Biomarkers/blood , Eosinophils/metabolism , Female , Humans , Inflammation/blood , Inflammation/diagnosis , Inflammation/epidemiology , Male , Middle Aged , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/epidemiology , Smoking/epidemiology
2.
Respir Res ; 16: 154, 2015 Dec 22.
Article in English | MEDLINE | ID: mdl-26696093

ABSTRACT

BACKGROUND: Macrophages constitute a heterogeneous cell population with pro- (MΦ1) and anti-inflammatory (MΦ2) cells. The soluble chitinase-like-protein YKL-40 is expressed in macrophages and various other cell types, and has been linked to a variety of inflammatory diseases, including COPD. Dexamethasone strongly reduces YKL-40 expression in peripheral blood mononuclear cells (PBMC) in vitro. We hypothesized that: a) YKL-40 is differentially expressed by MΦ1 and MΦ2, b) is decreased by corticosteroids and c) that long-term treatment with inhaled corticosteroids (ICS) affects YKL-40 levels in serum and sputum of COPD patients. METHODS: Monocytes of healthy subjects were cultured in vitro for 7 days with either GM-CSF or M-CSF (for MΦ1 and MΦ2, respectively) and stimulated for 24 h with LPS, TNFα, or oncostatin M (OSM). MΦ1 and MΦ2 differentiation was assessed by measuring secretion of IL-12p40 and IL-10, respectively. YKL-40 expression in macrophages was measured by quantitative RT-PCR (qPCR) and ELISA; serum and sputum YKL-40 levels were analyzed by ELISA. RESULTS: Pro-inflammatory MΦ1 cells secreted significantly more YKL-40 than MΦ2, which was independent of stimulation with LPS, TNFα or OSM (p < 0.001) and confirmed by qPCR. Dexamethasone dose-dependently and significantly inhibited YKL-40 protein and mRNA levels in MΦ1. Serum YKL-40 levels of COPD patients were significantly higher than sputum YKL-40 levels but were not significantly changed by ICS treatment. CONCLUSIONS: YKL-40 secretion from MΦ1 cells is higher than from MΦ2 cells and is unaffected by further stimulation with pro-inflammatory agents. Furthermore, YKL-40 release from cultured monocyte-derived macrophages is inhibited by dexamethasone especially in MΦ1, but ICS treatment did not change YKL-40 serum and sputum levels in COPD. These results indicate that YKL-40 expression could be used as a marker for MΦ1 macrophages in vitro, but not for monitoring the effect of ICS in COPD. TRIAL REGISTRATION: ClinicalTrials.gov, registration number: NCT00158847.


Subject(s)
Adipokines/metabolism , Anti-Inflammatory Agents/pharmacology , Dexamethasone/pharmacology , Glucocorticoids/pharmacology , Lectins/metabolism , Macrophages/drug effects , Pulmonary Disease, Chronic Obstructive/drug therapy , Adipokines/blood , Adipokines/genetics , Administration, Inhalation , Aged , Anti-Inflammatory Agents/administration & dosage , Biomarkers/metabolism , Bronchodilator Agents/administration & dosage , Cells, Cultured , Chitinase-3-Like Protein 1 , Dose-Response Relationship, Drug , Down-Regulation , Drug Administration Schedule , Female , Fluticasone-Salmeterol Drug Combination/administration & dosage , Glucocorticoids/administration & dosage , Humans , Inflammation Mediators/metabolism , Inflammation Mediators/pharmacology , Lectins/blood , Lectins/genetics , Macrophages/immunology , Macrophages/metabolism , Male , Middle Aged , Netherlands , Phenotype , Pulmonary Disease, Chronic Obstructive/blood , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/immunology , Sputum/metabolism , Time Factors , Treatment Outcome
3.
Pulm Pharmacol Ther ; 19(4): 286-91, 2006.
Article in English | MEDLINE | ID: mdl-16140028

ABSTRACT

Hyaluronic acid (HA) is a polysaccharide that is present in human tissues and body fluids. HA has various functions, including a barrier effect, water homeostasis, stabilizing the extracellular matrix, increased mucociliary clearance and elastin injury prevention. It may therefore exert prophylactic activity in the treatment of asthma. We tested the hypothesis that HA inhalation will prevent exercise-induced bronchoconstriction (EIB) in a randomised double-blinded placebo-controlled crossover study. Sixteen asthmatic patients with EIB were included in the study (mean (SD)) (age 24.5 (7.3) yr, FEV1 88.6 (11.3) %predicted, PC20 methacholine (g-mean (SD in DD)) 0.4 (1.5) mg/ml). On two separate visits an exercise challenge was performed 15 min post-inhalation of either HA (3 ml 0.1% in PBS) or placebo (3 ml PBS). The maximum fall in FEV1 and the AUC 30 min post-exercise were used as outcomes. After inhalation of both HA and placebo, baseline FEV1 decreased significantly (HA 4.1 (3.1)%, placebo 2.9 (4.1)%, P<0.017). The maximum fall in FEV1 following exercise challenge was not significantly different between HA versus placebo (median HA 22.50%, placebo 27.20%, P=0.379), as was the AUC (median HA 379.3 min*%fall, placebo 498.9 min*%fall, P=0.501). We conclude that at the current dose, inhaled HA does not significantly protect against EIB. This suggests that HA is not effective as a prophylaxis for EIB in patients with asthma.


Subject(s)
Asthma, Exercise-Induced/prevention & control , Hyaluronic Acid/therapeutic use , Adjuvants, Immunologic/administration & dosage , Adjuvants, Immunologic/pharmacokinetics , Adjuvants, Immunologic/therapeutic use , Administration, Inhalation , Adult , Area Under Curve , Asthma, Exercise-Induced/physiopathology , Bronchial Provocation Tests , Carbon Monoxide/metabolism , Cross-Over Studies , Double-Blind Method , Exercise Test , Female , Forced Expiratory Volume/drug effects , Humans , Hyaluronic Acid/administration & dosage , Hyaluronic Acid/pharmacokinetics , Male , Methacholine Chloride , Middle Aged , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...