Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 136
Filter
1.
Microsyst Nanoeng ; 10(1): 126, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39251611

ABSTRACT

Patient-derived tumor organoids have emerged as promising models for predicting personalized drug responses in cancer therapy, but they typically lack immune components. Preserving the in vivo association between tumor cells and endogenous immune cells is critical for accurate testing of cancer immunotherapies. Mechanical dissection of tumor specimens into tumor fragments, as opposed to enzymatic digestion into single cells, is essential for maintaining these native tumor-immune cell spatial relationships. However, conventional mechanical dissection relying on manual mincing is time-consuming and irreproducible. This study describes two microdissection devices, the µDicer and µGrater, to facilitate the generation of intact tumor fragments from mouse B16 melanoma, a common model of human melanoma. The µDicer- and µGrater-cut tumor fragments were used to generate air‒liquid interface (ALI) organoids that copreserve tumor cells with infiltrating immune subsets without artificial reconstitution. The µDicer, consisting of a hexagonal array of silicon microblades, was employed to investigate the effect of organoid size. The viability of ALI organoid immune cells appeared insensitive to organoid sizes exceeding ~400 µm but diminished in organoids ~200 µm in size. The µGrater, consisting of an array of submillimeter holes in stainless steel, was employed to accelerate dissection. For the samples studied, the µGrater was 4.5 times faster than manual mincing. Compared with those generated by manual mincing, ALI organoids generated by the µGrater demonstrated similar viability, immune cell composition, and responses to anti-PD-1 immunotherapy. With further optimization, the µGrater holds potential for integration into clinical workflows to support the advancement of personalized cancer immunotherapy.

2.
Cancer Discov ; 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39109936

ABSTRACT

Oncogene amplification on extrachromosomal DNA (ecDNA) is a pervasive driver event in cancer, yet our understanding of how ecDNA forms is limited. Here, we couple a CRISPR-based method for ecDNA induction with extensive characterization of newly formed ecDNA to examine their biogenesis. We find that DNA circularization is efficient, irrespective of 3D genome context, with formation of 800kb, 1 Mb, and 1.8 Mb ecDNAs reaching or exceeding 15%. We show non-homologous end joining and microhomology-mediated end joining both contribute to ecDNA formation, while inhibition of DNA-PKcs and ATM have opposing impacts on ecDNA formation. EcDNA and the corresponding chromosomal excision scar can form at significantly different rates and respond differently to DNA-PKcs and ATM inhibition. Taken together, our results support a model of ecDNA formation in which double strand break ends dissociate from their legitimate ligation partners prior to joining of illegitimate ends to form the ecDNA and excision scar.

3.
Nature ; 632(8024): 401-410, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39048815

ABSTRACT

In vitro models of autoimmunity are constrained by an inability to culture affected epithelium alongside the complex tissue-resident immune microenvironment. Coeliac disease (CeD) is an autoimmune disease in which dietary gluten-derived peptides bind to the major histocompatibility complex (MHC) class II human leukocyte antigen molecules (HLA)-DQ2 or HLA-DQ8 to initiate immune-mediated duodenal mucosal injury1-4. Here, we generated air-liquid interface (ALI) duodenal organoids from intact fragments of endoscopic biopsies that preserve epithelium alongside native mesenchyme and tissue-resident immune cells as a unit without requiring reconstitution. The immune diversity of ALI organoids spanned T cells, B and plasma cells, natural killer (NK) cells and myeloid cells, with extensive T-cell and B-cell receptor repertoires. HLA-DQ2.5-restricted gluten peptides selectively instigated epithelial destruction in HLA-DQ2.5-expressing organoids derived from CeD patients, and this was antagonized by blocking MHC-II or NKG2C/D. Gluten epitopes stimulated a CeD organoid immune network response in lymphoid and myeloid subsets alongside anti-transglutaminase 2 (TG2) autoantibody production. Functional studies in CeD organoids revealed that interleukin-7 (IL-7) is a gluten-inducible pathogenic modulator that regulates CD8+ T-cell NKG2C/D expression and is necessary and sufficient for epithelial destruction. Furthermore, endogenous IL-7 was markedly upregulated in patient biopsies from active CeD compared with remission disease from gluten-free diets, predominantly in lamina propria mesenchyme. By preserving the epithelium alongside diverse immune populations, this human in vitro CeD model recapitulates gluten-dependent pathology, enables mechanistic investigation and establishes a proof of principle for the organoid modelling of autoimmunity.


Subject(s)
Celiac Disease , Duodenum , Interleukin-7 , Intestinal Mucosa , Models, Biological , Organoids , Humans , Autoantibodies/immunology , Autoimmunity , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Biopsy , Celiac Disease/immunology , Celiac Disease/pathology , Celiac Disease/metabolism , Duodenum/immunology , Duodenum/pathology , Duodenum/metabolism , Epitopes/immunology , Glutens/immunology , Glutens/metabolism , GTP-Binding Proteins/metabolism , GTP-Binding Proteins/immunology , HLA-DQ Antigens/immunology , HLA-DQ Antigens/metabolism , Interleukin-7/metabolism , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Killer Cells, Natural/immunology , Myeloid Cells/immunology , Organoids/immunology , Organoids/metabolism , Organoids/pathology , Protein Glutamine gamma Glutamyltransferase 2/immunology , Receptors, Antigen, B-Cell/immunology , Receptors, Antigen, B-Cell/metabolism , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
4.
Nat Mater ; 23(8): 1138-1149, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38965405

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is characterized by its fibrotic and stiff extracellular matrix. However, how the altered cell/extracellular-matrix signalling contributes to the PDAC tumour phenotype has been difficult to dissect. Here we design and engineer matrices that recapitulate the key hallmarks of the PDAC tumour extracellular matrix to address this knowledge gap. We show that patient-derived PDAC organoids from three patients develop resistance to several clinically relevant chemotherapies when cultured within high-stiffness matrices mechanically matched to in vivo tumours. Using genetic barcoding, we find that while matrix-specific clonal selection occurs, cellular heterogeneity is not the main driver of chemoresistance. Instead, matrix-induced chemoresistance occurs within a stiff environment due to the increased expression of drug efflux transporters mediated by CD44 receptor interactions with hyaluronan. Moreover, PDAC chemoresistance is reversible following transfer from high- to low-stiffness matrices, suggesting that targeting the fibrotic extracellular matrix may sensitize chemoresistant tumours. Overall, our findings support the potential of engineered matrices and patient-derived organoids for elucidating extracellular matrix contributions to human disease pathophysiology.


Subject(s)
Carcinoma, Pancreatic Ductal , Drug Resistance, Neoplasm , Extracellular Matrix , Organoids , Pancreatic Neoplasms , Humans , Organoids/metabolism , Organoids/pathology , Organoids/drug effects , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/drug therapy , Extracellular Matrix/metabolism , Hyaluronic Acid/metabolism , Hyaluronic Acid/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
5.
Nat Rev Cancer ; 24(8): 523-539, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38977835

ABSTRACT

The development of neoplasia involves a complex and continuous interplay between malignantly transformed cells and the tumour microenvironment (TME). Cancer immunotherapies targeting the immune TME have been increasingly validated in clinical trials but response rates vary substantially between tumour histologies and are often transient, idiosyncratic and confounded by resistance. Faithful experimental models of the patient-specific tumour immune microenvironment, capable of recapitulating tumour biology and immunotherapy effects, would greatly improve patient selection, target identification and definition of resistance mechanisms for immuno-oncology therapeutics. In this Review, we discuss currently available and rapidly evolving 3D tumour organoid models that capture important immune features of the TME. We highlight diverse opportunities for organoid-based investigations of tumour immunity, drug development and precision medicine.


Subject(s)
Neoplasms , Organoids , Tumor Microenvironment , Tumor Microenvironment/immunology , Humans , Organoids/immunology , Organoids/pathology , Neoplasms/immunology , Neoplasms/pathology , Neoplasms/therapy , Precision Medicine , Immunotherapy/methods , Animals , Models, Biological
6.
JCI Insight ; 9(14)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38869953

ABSTRACT

Duodenal bicarbonate secretion is critical to epithelial protection, as well as nutrient digestion and absorption, and is impaired in cystic fibrosis (CF). We examined if linaclotide, typically used to treat constipation, may also stimulate duodenal bicarbonate secretion. Bicarbonate secretion was measured in vivo and in vitro using mouse and human duodenum (biopsies and enteroids). Ion transporter localization was identified with confocal microscopy, and de novo analysis of human duodenal single-cell RNA sequencing (scRNA-Seq) data sets was performed. Linaclotide increased bicarbonate secretion in mouse and human duodenum in the absence of cystic fibrosis transmembrane conductance regulator (CFTR) expression (Cftr-knockout mice) or function (CFTRinh-172). Na+/H+ exchanger 3 inhibition contributed to a portion of this response. Linaclotide-stimulated bicarbonate secretion was eliminated by down-regulated in adenoma (DRA, SLC26A3) inhibition during loss of CFTR activity. ScRNA-Seq identified that 70% of villus cells expressed SLC26A3, but not CFTR, mRNA. Loss of CFTR activity and linaclotide increased apical brush border expression of DRA in non-CF and CF differentiated enteroids. These data provide further insights into the action of linaclotide and how DRA may compensate for loss of CFTR in regulating luminal pH. Linaclotide may be a useful therapy for CF individuals with impaired bicarbonate secretion.


Subject(s)
Bicarbonates , Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Duodenum , Mice, Knockout , Peptides , Sulfate Transporters , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Animals , Mice , Bicarbonates/metabolism , Humans , Sulfate Transporters/metabolism , Sulfate Transporters/genetics , Peptides/pharmacology , Cystic Fibrosis/metabolism , Cystic Fibrosis/genetics , Cystic Fibrosis/drug therapy , Cystic Fibrosis/pathology , Duodenum/metabolism , Duodenum/drug effects , Sodium-Hydrogen Exchanger 3/metabolism , Sodium-Hydrogen Exchanger 3/genetics , Male , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Antiporters , Chloride-Bicarbonate Antiporters
7.
Nature ; 630(8016): 457-465, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38750365

ABSTRACT

Adoptively transferred T cells and agents designed to block the CD47-SIRPα axis are promising cancer therapeutics that activate distinct arms of the immune system1,2. Here we administered anti-CD47 antibodies in combination with adoptively transferred T cells with the goal of enhancing antitumour efficacy but observed abrogated therapeutic benefit due to rapid macrophage-mediated clearance of T cells expressing chimeric antigen receptors (CARs) or engineered T cell receptors. Anti-CD47-antibody-mediated CAR T cell clearance was potent and rapid enough to serve as an effective safety switch. To overcome this challenge, we engineered the CD47 variant CD47(Q31P) (47E), which engages SIRPα and provides a 'don't eat me' signal that is not blocked by anti-CD47 antibodies. TCR or CAR T cells expressing 47E are resistant to clearance by macrophages after treatment with anti-CD47 antibodies, and mediate substantial, sustained macrophage recruitment to the tumour microenvironment. Although many of the recruited macrophages manifested an M2-like profile3, the combined therapy synergistically enhanced antitumour efficacy. Our study identifies macrophages as major regulators of T cell persistence and illustrates the fundamental challenge of combining T-cell-directed therapeutics with those designed to activate macrophages. It delivers a therapeutic approach that is capable of simultaneously harnessing the antitumour effects of T cells and macrophages, offering enhanced potency against solid tumours.


Subject(s)
CD47 Antigen , Immunotherapy, Adoptive , Neoplasms , T-Lymphocytes , Animals , Female , Humans , Male , Mice , Antigens, Differentiation/immunology , Antigens, Differentiation/metabolism , CD47 Antigen/genetics , CD47 Antigen/immunology , CD47 Antigen/metabolism , Cell Line, Tumor , Immunotherapy, Adoptive/methods , Macrophages/cytology , Macrophages/immunology , Neoplasms/immunology , Neoplasms/metabolism , Neoplasms/therapy , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/metabolism , Receptors, Immunologic/immunology , Receptors, Immunologic/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , T-Lymphocytes/transplantation , Tumor Microenvironment/immunology , Antibodies/immunology , Antibodies/therapeutic use , Macrophage Activation
8.
Nat Commun ; 15(1): 3741, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702301

ABSTRACT

Targeted therapy is effective in many tumor types including lung cancer, the leading cause of cancer mortality. Paradigm defining examples are targeted therapies directed against non-small cell lung cancer (NSCLC) subtypes with oncogenic alterations in EGFR, ALK and KRAS. The success of targeted therapy is limited by drug-tolerant persister cells (DTPs) which withstand and adapt to treatment and comprise the residual disease state that is typical during treatment with clinical targeted therapies. Here, we integrate studies in patient-derived and immunocompetent lung cancer models and clinical specimens obtained from patients on targeted therapy to uncover a focal adhesion kinase (FAK)-YAP signaling axis that promotes residual disease during oncogenic EGFR-, ALK-, and KRAS-targeted therapies. FAK-YAP signaling inhibition combined with the primary targeted therapy suppressed residual drug-tolerant cells and enhanced tumor responses. This study unveils a FAK-YAP signaling module that promotes residual disease in lung cancer and mechanism-based therapeutic strategies to improve tumor response.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Drug Resistance, Neoplasm , Lung Neoplasms , Signal Transduction , Transcription Factors , YAP-Signaling Proteins , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Signal Transduction/drug effects , Transcription Factors/metabolism , Transcription Factors/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , YAP-Signaling Proteins/metabolism , Cell Line, Tumor , Animals , Drug Resistance, Neoplasm/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Neoplasm, Residual , Mice , Focal Adhesion Kinase 1/metabolism , Focal Adhesion Kinase 1/genetics , ErbB Receptors/metabolism , ErbB Receptors/genetics , Anaplastic Lymphoma Kinase/metabolism , Anaplastic Lymphoma Kinase/genetics , Anaplastic Lymphoma Kinase/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Xenograft Model Antitumor Assays
9.
Development ; 151(11)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38682276

ABSTRACT

The GPR124/RECK/WNT7 pathway is an essential regulator of CNS angiogenesis and blood-brain barrier (BBB) function. GPR124, a brain endothelial adhesion seven-pass transmembrane protein, associates with RECK, which binds and stabilizes newly synthesized WNT7 that is transferred to frizzled (FZD) to initiate canonical ß-catenin signaling. GPR124 remains enigmatic: although its extracellular domain (ECD) is essential, the poorly conserved intracellular domain (ICD) appears to be variably required in mammals versus zebrafish, potentially via adaptor protein bridging of GPR124 and FZD ICDs. GPR124 ICD deletion impairs zebrafish angiogenesis, but paradoxically retains WNT7 signaling upon mammalian transfection. We thus investigated GPR124 ICD function using the mouse deletion mutant Gpr124ΔC. Despite inefficiently expressed GPR124ΔC protein, Gpr124ΔC/ΔC mice could be born with normal cerebral cortex angiogenesis, in comparison with Gpr124-/- embryonic lethality, forebrain avascularity and hemorrhage. Gpr124ΔC/ΔC vascular phenotypes were restricted to sporadic ganglionic eminence angiogenic defects, attributable to impaired GPR124ΔC protein expression. Furthermore, Gpr124ΔC and the recombinant GPR124 ECD rescued WNT7 signaling in culture upon brain endothelial Gpr124 knockdown. Thus, in mice, GPR124-regulated CNS forebrain angiogenesis and BBB function are exerted by ICD-independent functionality, extending the signaling mechanisms used by adhesion seven-pass transmembrane receptors.


Subject(s)
Blood-Brain Barrier , Brain , Neovascularization, Physiologic , Receptors, G-Protein-Coupled , Animals , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/embryology , Neovascularization, Physiologic/genetics , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Mice , Brain/metabolism , Brain/embryology , Protein Domains , Mice, Knockout , Signal Transduction , Wnt Proteins/metabolism , Wnt Proteins/genetics , Humans , Endothelial Cells/metabolism , Angiogenesis , GPI-Linked Proteins
10.
Anal Chem ; 96(19): 7444-7451, 2024 05 14.
Article in English | MEDLINE | ID: mdl-38684052

ABSTRACT

Next-generation sequencing offers highly multiplexed and accurate detection of nucleic acid sequences but at the expense of complex workflows and high input requirements. The ease of use of CRISPR-Cas12 assays is attractive and may enable highly accurate detection of sequences implicated in, for example, cancer pathogenic variants. CRISPR assays often employ end-point measurements of Cas12 trans-cleavage activity after Cas12 activation by the target; however, end point-based methods can be limited in accuracy and robustness by arbitrary experimental choices. To overcome such limitations, we develop and demonstrate here an accurate assay targeting a mutation of the epidermal growth factor gene implicated in lung cancer (exon 19 deletion). The assay is based on characterizing the kinetics of Cas12 trans-cleavage to discriminate the mutant from wild-type targets. We performed extensive experiments (780 reactions) to calibrate key assay design parameters, including the guide RNA sequence, reporter sequence, reporter concentration, enzyme concentration, and DNA target type. Interestingly, we observed a competitive reaction between the target and reporter molecules that has important consequences for the design of CRISPR assays, which use preamplification to improve sensitivity. Finally, we demonstrate the assay on 18 tumor-extracted amplicons and 100 training iterations with 99% accuracy and discuss discrimination parameters and models to improve wild type versus mutant classification.


Subject(s)
Gene Deletion , Genes, erbB-1 , Genotyping Techniques , Genotyping Techniques/instrumentation , Genotyping Techniques/methods , Genotyping Techniques/standards , Genes, Reporter/genetics , Genes, erbB-1/genetics , Humans , RNA, Guide, CRISPR-Cas Systems/genetics , RNA, Guide, CRISPR-Cas Systems/metabolism , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics , Reproducibility of Results
11.
Cell Rep ; 42(11): 113392, 2023 11 28.
Article in English | MEDLINE | ID: mdl-37925638

ABSTRACT

The blood-brain barrier (BBB) is primarily manifested by a variety of physiological properties of brain endothelial cells (ECs), but the molecular foundation for these properties remains incompletely clear. Here, we generate a comprehensive molecular atlas of adult brain ECs using acutely purified mouse ECs and integrated multi-omics. Using RNA sequencing (RNA-seq) and proteomics, we identify the transcripts and proteins selectively enriched in brain ECs and demonstrate that they are partially correlated. Using single-cell RNA-seq, we dissect the molecular basis of functional heterogeneity of brain ECs. Using integrative epigenomics and transcriptomics, we determine that TCF/LEF, SOX, and ETS families are top-ranked transcription factors regulating the BBB. We then validate the identified brain-EC-enriched proteins and transcription factors in normal mouse and human brain tissue and assess their expression changes in mice with Alzheimer's disease. Overall, we present a valuable resource with broad implications for regulation of the BBB and treatment of neurological disorders.


Subject(s)
Alzheimer Disease , Endothelial Cells , Mice , Adult , Humans , Animals , Endothelial Cells/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Multiomics , Blood-Brain Barrier/metabolism , Brain/metabolism , Transcription Factors/metabolism
12.
Cell Rep ; 42(11): 113355, 2023 11 28.
Article in English | MEDLINE | ID: mdl-37922313

ABSTRACT

Somatic copy number gains are pervasive across cancer types, yet their roles in oncogenesis are insufficiently evaluated. This inadequacy is partly due to copy gains spanning large chromosomal regions, obscuring causal loci. Here, we employed organoid modeling to evaluate candidate oncogenic loci identified via integrative computational analysis of extreme copy gains overlapping with extreme expression dysregulation in The Cancer Genome Atlas. Subsets of "outlier" candidates were contextually screened as tissue-specific cDNA lentiviral libraries within cognate esophagus, oral cavity, colon, stomach, pancreas, and lung organoids bearing initial oncogenic mutations. Iterative analysis nominated the kinase DYRK2 at 12q15 as an amplified head and neck squamous carcinoma oncogene in p53-/- oral mucosal organoids. Similarly, FGF3, amplified at 11q13 in 41% of esophageal squamous carcinomas, promoted p53-/- esophageal organoid growth reversible by small molecule and soluble receptor antagonism of FGFRs. Our studies establish organoid-based contextual screening of candidate genomic drivers, enabling functional evaluation during early tumorigenesis.


Subject(s)
Neoplasms , Tumor Suppressor Protein p53 , Humans , Tumor Suppressor Protein p53/genetics , Oncogenes , Cell Transformation, Neoplastic/genetics , Neoplasms/genetics , Carcinogenesis/genetics , Gene Amplification
13.
J Infect Dis ; 228(Suppl 5): S337-S354, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37669225

ABSTRACT

The National Center for Advancing Translational Sciences (NCATS) Assay Guidance Manual (AGM) Workshop on 3D Tissue Models for Antiviral Drug Development, held virtually on 7-8 June 2022, provided comprehensive coverage of critical concepts intended to help scientists establish robust, reproducible, and scalable 3D tissue models to study viruses with pandemic potential. This workshop was organized by NCATS, the National Institute of Allergy and Infectious Diseases, and the Bill and Melinda Gates Foundation. During the workshop, scientific experts from academia, industry, and government provided an overview of 3D tissue models' utility and limitations, use of existing 3D tissue models for antiviral drug development, practical advice, best practices, and case studies about the application of available 3D tissue models to infectious disease modeling. This report includes a summary of each workshop session as well as a discussion of perspectives and challenges related to the use of 3D tissues in antiviral drug discovery.


Subject(s)
Antiviral Agents , Drug Discovery , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Biological Assay
14.
Nat Commun ; 14(1): 2947, 2023 06 02.
Article in English | MEDLINE | ID: mdl-37268690

ABSTRACT

Derangements of the blood-brain barrier (BBB) or blood-retinal barrier (BRB) occur in disorders ranging from stroke, cancer, diabetic retinopathy, and Alzheimer's disease. The Norrin/FZD4/TSPAN12 pathway activates WNT/ß-catenin signaling, which is essential for BBB and BRB function. However, systemic pharmacologic FZD4 stimulation is hindered by obligate palmitoylation and insolubility of native WNTs and suboptimal properties of the FZD4-selective ligand Norrin. Here, we develop L6-F4-2, a non-lipidated, FZD4-specific surrogate which significantly improves subpicomolar affinity versus native Norrin. In Norrin knockout (NdpKO) mice, L6-F4-2 not only potently reverses neonatal retinal angiogenesis deficits, but also restores BRB and BBB function. In adult C57Bl/6J mice, post-stroke systemic delivery of L6-F4-2 strongly reduces BBB permeability, infarction, and edema, while improving neurologic score and capillary pericyte coverage. Our findings reveal systemic efficacy of a bioengineered FZD4-selective WNT surrogate during ischemic BBB dysfunction, with potential applicability to adult CNS disorders characterized by an aberrant blood-brain barrier.


Subject(s)
Blood-Brain Barrier , Frizzled Receptors , Mice , Animals , Blood-Brain Barrier/metabolism , Frizzled Receptors/genetics , Frizzled Receptors/metabolism , Retina/metabolism , Blood-Retinal Barrier/metabolism , Wnt Signaling Pathway
15.
Res Sq ; 2023 May 05.
Article in English | MEDLINE | ID: mdl-37205380

ABSTRACT

Tissue-resident immunity underlies essential host defenses against pathogens, but analysis in humans has lacked in vitro model systems where epithelial infection and accompanying resident immune cell responses can be observed en bloc. Indeed, human primary epithelial organoid cultures typically omit immune cells, and human tissue resident-memory lymphocytes are conventionally assayed without an epithelial infection component, for instance from peripheral blood, or after extraction from organs. Further, the study of resident immunity in animals can be complicated by interchange between tissue and peripheral immune compartments. To study human tissue-resident infectious immune responses in isolation from secondary lymphoid organs, we generated adult human lung three-dimensional air-liquid interface (ALI) lung organoids from intact tissue fragments that co-preserve epithelial and stromal architecture alongside endogenous lung-resident immune subsets. These included T, B, NK and myeloid cells, with CD69+CD103+ tissue-resident and CCR7- and/or CD45RA- TRM and conservation of T cell receptor repertoires, all corresponding to matched fresh tissue. SARS-CoV-2 vigorously infected organoid lung epithelium, alongside secondary induction of innate cytokine production that was inhibited by antiviral agents. Notably, SARS-CoV-2-infected organoids manifested adaptive virus-specific T cell activation that was specific for seropositive and/or previously infected donor individuals. This holistic non-reconstitutive organoid system demonstrates the sufficiency of lung to autonomously mount adaptive T cell memory responses without a peripheral lymphoid component, and represents an enabling method for the study of human tissue-resident immunity.

16.
bioRxiv ; 2023 May 07.
Article in English | MEDLINE | ID: mdl-37205513

ABSTRACT

Duodenal bicarbonate secretion is critical to epithelial protection, nutrient digestion/absorption and is impaired in cystic fibrosis (CF). We examined if linaclotide, typically used to treat constipation, may also alter duodenal bicarbonate secretion. Bicarbonate secretion was measured in vivo and in vitro using mouse and human duodenum. Ion transporter localization was identified with confocal microscopy and de novo analysis of human duodenal single cell RNA sequencing (sc-RNAseq) was performed. Linaclotide increased bicarbonate secretion in mouse and human duodenum in the absence of CFTR expression or function. Linaclotide-stimulated bicarbonate secretion was eliminated by down-regulated in adenoma (DRA) inhibition, regardless of CFTR activity. Sc-RNAseq identified that 70% of villus cells expressed SLC26A3, but not CFTR, mRNA. Linaclotide increased apical membrane expression of DRA in non-CF and CF differentiated enteroids. These data provide insights into the action of linaclotide and suggest linaclotide may be a useful therapy for CF individuals with impaired bicarbonate secretion.

17.
Nature ; 618(7964): 383-393, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37258665

ABSTRACT

The earliest events during human tumour initiation, although poorly characterized, may hold clues to malignancy detection and prevention1. Here we model occult preneoplasia by biallelic inactivation of TP53, a common early event in gastric cancer, in human gastric organoids. Causal relationships between this initiating genetic lesion and resulting phenotypes were established using experimental evolution in multiple clonally derived cultures over 2 years. TP53 loss elicited progressive aneuploidy, including copy number alterations and structural variants prevalent in gastric cancers, with evident preferred orders. Longitudinal single-cell sequencing of TP53-deficient gastric organoids similarly indicates progression towards malignant transcriptional programmes. Moreover, high-throughput lineage tracing with expressed cellular barcodes demonstrates reproducible dynamics whereby initially rare subclones with shared transcriptional programmes repeatedly attain clonal dominance. This powerful platform for experimental evolution exposes stringent selection, clonal interference and a marked degree of phenotypic convergence in premalignant epithelial organoids. These data imply predictability in the earliest stages of tumorigenesis and show evolutionary constraints and barriers to malignant transformation, with implications for earlier detection and interception of aggressive, genome-instable tumours.


Subject(s)
Cell Transformation, Neoplastic , Clonal Evolution , Precancerous Conditions , Selection, Genetic , Stomach Neoplasms , Humans , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/pathology , Clonal Evolution/genetics , Genomic Instability , Mutation , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Precancerous Conditions/genetics , Precancerous Conditions/pathology , Organoids/metabolism , Organoids/pathology , Aneuploidy , DNA Copy Number Variations , Single-Cell Analysis , Tumor Suppressor Protein p53/deficiency , Tumor Suppressor Protein p53/genetics , Disease Progression , Cell Lineage
19.
Article in English | MEDLINE | ID: mdl-36987582

ABSTRACT

The neurovascular unit is a dynamic microenvironment with tightly controlled signaling and transport coordinated by the blood-brain barrier (BBB). A properly functioning BBB allows sufficient movement of ions and macromolecules to meet the high metabolic demand of the central nervous system (CNS), while protecting the brain from pathogenic and noxious insults. This review describes the main cell types comprising the BBB and unique molecular signatures of these cells. Additionally, major signaling pathways for BBB development and maintenance are highlighted. Finally, we describe the pathophysiology of BBB diseases, their relationship to barrier dysfunction, and identify avenues for therapeutic intervention.

20.
Cancer Sci ; 114(7): 2895-2906, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36945114

ABSTRACT

The cancer stem cell (CSC) theory features typically rare self-renewing subpopulations that reconstitute the heterogeneous tumor. Identification of molecules that characterize the features of CSCs is a key imperative for further understanding tumor heterogeneity and for the development of novel therapeutic strategies. However, the use of conventional markers of CSCs is still insufficient for the isolation of bona fide CSCs. We investigated organoids that are miniature forms of tumor tissues by reconstructing cellular diversity to identify specific markers to characterize CSCs in heterogeneous tumors. Here, we report that the receptor for hyaluronan-mediated motility (RHAMM) expresses in a subpopulation of CD44+ conventional human colorectal CSC fraction. Single-cell transcriptomics of organoids highlighted RHAMM-positive proliferative cells that revealed distinct characteristics among the various cell types. Prospectively isolated RHAMM+CD44+ cells from the human colorectal cancer tissues showed highly proliferative characteristics with a self-renewal ability in comparison with the other cancer cells. Furthermore, inhibition of RHAMM strongly suppressed organoid formation in vitro and inhibited tumor growth in vivo. Our findings suggest that RHAMM is a potential therapeutic target because it is a specific marker of the proliferative subpopulation within the conventional CSC fraction.


Subject(s)
Colorectal Neoplasms , Hyaluronan Receptors , Humans , Hyaluronan Receptors/metabolism , Colorectal Neoplasms/pathology , Neoplastic Stem Cells/metabolism , Cell Line, Tumor
SELECTION OF CITATIONS
SEARCH DETAIL