Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 16(21): 27329-27338, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38764171

ABSTRACT

The different electrolyte conditions, e.g., pH value, for driving efficient HER and OER are one of the major issues hindering the aim for electrocatalytic water splitting in a high efficiency. In this regard, seeking durable and active HER electrocatalysts to align the alkaline conditions of the OER is a promising solution. However, the success in this strategy will depend on a fundamental understanding about the HER mechanism at the atomic scale. In this work, we have provided thorough understanding for the electrochemical HER mechanisms in KOH over Ni- and Co-based hollow pyrite microspheres by in operando X-ray spectroscopies and DFT calculations, including NiS2, CoS2, and Ni0.5Co0.5S2. We discovered that the Ni sites in hollow NiS2 microspheres were very stable and inert, while the Co sites in hollow CoS2 microspheres underwent reduction and generated Co metallic crystal domains under HER. The generation of Co metallic sites would further deactivate H2 evolution due to the large hydrogen desorption free energy (-1.73 eV). In contrast, the neighboring Ni and Co sites in hollow Ni0.5Co0.5S2 microspheres exhibited the electronic interaction to elevate the reactivity of Ni and facilitate the stability of Co without structure or surface degradation. The energy barrier in H2O adsorption/dissociation was only 0.73 eV, followed by 0.06 eV for hydrogen desorption over the Ni0.5Co0.5S2 surface, revealing Ni0.5Co0.5S2 as a HER electrocatalyst with higher durability and activity than NiS2 and CoS2 in the alkaline medium due to the synergy of neighboring Ni and Co sites. We believe that the findings in our work offer a guidance toward future catalyst design.

2.
ACS Nano ; 18(2): 1611-1620, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38166379

ABSTRACT

Single-atom catalysts, known for their high activity, have garnered significant interest. Currently, single-atom catalysts were prepared mainly on 2D substrates with random distribution. Here, we report a strategy for preparing arrayed single Pt (Pt1) atoms, which are templated through coordination with phosphotungstic acids (PTA) intercalated inside hexagonally packed silicate nanochannels for a high single Pt-atom loading of ca. 3.0 wt %. X-ray absorption spectroscopy, high-angle annular dark-field scanning transmission electron microscopy, and energy-dispersive X-ray spectroscopy, in conjunction with the density-functional theory calculation, collectively indicate that the Pt single atoms are stabilized via a four-oxygen coordination on the PTA within the nanochannels' inner walls. The critical reduction in the Pt-adsorption energy to nearly the cohesive energy of Pt clustering is attributed to the interaction between PTA and the silicate substrate. Consequently, the transition from single-atom dispersion to clustering of Pt atoms can be controlled by adjusting the number density of PTA intercalated within the silicate nanochannels, specifically when the number ratio of Pt atoms to PTA changes from 3.7 to 18. The 3D organized Pt1-PTA pairs, facilitated by the arrayed silicate nanochannels, demonstrate high and stable efficiency with a hydrogen production rate of ca. 300 mmol/h/gPt─approximately twice that of the best-reported Pt efficiency in polyoxometalate-based photocatalytic systems.

3.
Eur Arch Psychiatry Clin Neurosci ; 273(3): 663-677, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36253583

ABSTRACT

Theory of mind (ToM) deficits in people with schizophrenia have been reported and associated with impaired social interactions. Thus, ToM deficits may negatively impact social functioning and warrant consideration in treatment development. However, extant ToM measures may place excessive cognitive demands on people with schizophrenia. Therefore, the study aimed to develop a comprehensible Assessment of ToM for people with Schizophrenia (AToMS) and evaluate its psychometric properties. The AToMs was developed in 5 stages, including item formation, expert review, content validity evaluation, animation production, and cognitive interviews of 25 people with schizophrenia. The psychometric properties of the 16-item AToMS (including reliability and validity) were then tested on 59 people with schizophrenia. The newly developed animated AToMS assesses 8 ToM concepts in the cognitive and affective dimensions while placing minimal neurocognitive demands on people with schizophrenia. The AToMS presented satisfactory psychometric properties, with adequate content validity (content validity index = 0.91); mostly moderate item difficulty (item difficulty index = 0.339-0.966); good discrimination (coefficients = 0.379-0.786), internal consistency (Cronbach's α = 0.850), and reliability (intraclass correlation coefficient = 0.901 for test-retest, 0.997 for inter-rater); and satisfactory convergent and divergent validity. The AToMS is reliable and valid for evaluating ToM characteristics in people with schizophrenia. Future studies are warranted to examine the AToMS in other populations (e.g., people with affective disorders) to cross-validate and extend its utility and psychometric evidence.


Subject(s)
Schizophrenia , Theory of Mind , Humans , Psychometrics , Schizophrenia/complications , Reproducibility of Results , Schizophrenic Psychology
4.
ACS Appl Mater Interfaces ; 13(51): 60894-60906, 2021 Dec 29.
Article in English | MEDLINE | ID: mdl-34914364

ABSTRACT

Huntington's disease (HD) belongs to protein misfolding disorders associated with polyglutamine (polyQ)-rich mutant huntingtin (mHtt) protein inclusions. Currently, it is indicated that the aggregation of polyQ-rich mHtt participates in neuronal toxicity and dysfunction. Here, we designed and synthesized a polyglutamine-specific gold nanoparticle (AuNP) complex, which specifically targeted mHtt and alleviated its toxicity. The polyglutamine-specific AuNPs were prepared by decorating the surface of AuNPs with an amphiphilic peptide (JLD1) consisting of both polyglutamine-binding sequences and negatively charged sequences. By applying the polyQ aggregation model system, we demonstrated that AuNPs-JLD1 dissociated the fibrillary aggregates from the polyQ peptide and reduced its ß-sheet content in a concentration-dependent manner. By further integrating polyethyleneimine (PEI) onto AuNPs-JLD1, we generated a complex (AuNPs-JLD1-PEI). We showed that this complex could penetrate cells, bind to cytosolic mHtt proteins, dissociate mHtt inclusions, reduce mHtt oligomers, and ameliorate mHtt-induced toxicity. AuNPs-JLD1-PEI was also able to be transported to the brain and improved the functional deterioration in the HD Drosophila larva model. Our results revealed the feasibility of combining AuNPs, JLD1s, and cell-penetrating polymers against mHtt protein aggregation and oligomerization, which hinted on the early therapeutic strategies against HD.


Subject(s)
Biocompatible Materials/pharmacology , Drosophila Proteins/antagonists & inhibitors , Gold/pharmacology , Huntingtin Protein/antagonists & inhibitors , Huntington Disease/drug therapy , Metal Nanoparticles/chemistry , Organometallic Compounds/pharmacology , Peptides/pharmacology , Animals , Biocompatible Materials/chemistry , Drosophila , Drosophila Proteins/metabolism , Gold/chemistry , Huntingtin Protein/metabolism , Huntington Disease/metabolism , Materials Testing , Organometallic Compounds/chemistry , Peptides/chemistry , Protein Aggregates/drug effects
5.
ACS Appl Mater Interfaces ; 13(49): 58799-58808, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34859991

ABSTRACT

Bismuth oxyhalides (BiOX, X = F, Cl, Br, I) are emerging energy materials because of their remarkable catalytic activity. The BiOX compounds usually have a tetragonal type crystal structure with unique layered morphology consisting of [X-Bi-O-Bi-X] sheets. Although the BiOX nanosheets exposed with {001} facets perform superior photoactivity, there is lack of understanding about their capability in the electrochemical CO2 reduction reaction (CO2RR). Herein, we adopt wet-chemical syntheses to make 2D BiOCl and Pd-doped BiOCl nanosheets for CO2RR. In the results, formic acid is the only one kind of product converted from CO2 along with H2 gas from water reduction over both BiOCl and Pd-doped BiOCl nanosheets. By thorough analyses with ex situ and in situ spectroscopy, the results reflect that (1) metallic Bi0 atoms generated by the applied negative potentials serve as the catalytic sites for the hydrogen evolution reaction (HER) and CO2RR and (2) the existence of doped Pd ions in the BiOCl structure reduces the barrier of charge transfer over the nanosheets, which enhances HER and CO2RR activities. We believe that the observations are important references for making catalysts toward CO2RR performance.

6.
ACS Appl Mater Interfaces ; 13(44): 51809-51828, 2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34310110

ABSTRACT

Professor Chia-Kuang (Frank) Tsung made his scientific impact primarily through the atomic-level design of nanoscale materials for application in heterogeneous catalysis. He approached this challenge from two directions: above and below the material surface. Below the surface, Prof. Tsung synthesized finely controlled nanoparticles, primarily of noble metals and metal oxides, tailoring their composition and surface structure for efficient catalysis. Above the surface, he was among the first to leverage the tunability and stability of metal-organic frameworks (MOFs) to improve heterogeneous, molecular, and biocatalysts. This article, written by his former students, seeks first to commemorate Prof. Tsung's scientific accomplishments in three parts: (1) rationally designing nanocrystal surfaces to promote catalytic activity; (2) encapsulating nanocrystals in MOFs to improve catalyst selectivity; and (3) tuning the host-guest interaction between MOFs and guest molecules to inhibit catalyst degradation. The subsequent discussion focuses on building on the foundation laid by Prof. Tsung and on his considerable influence on his former group members and collaborators, both inside and outside of the lab.

7.
Chem Asian J ; 16(16): 2168-2184, 2021 Aug 16.
Article in English | MEDLINE | ID: mdl-34184830

ABSTRACT

An elevated level of anthropogenic CO2 has been the major cause of global warming, and significant efforts are being made around the world towards the development of CO2 capture, storage and reuse technologies. Among various CO2 conversion technologies, electrochemical CO2 reduction (CO2 RR) by nanocrystals is one of the most promising strategies as it is facile, quick, and can be integrated with other renewable energy techniques. Judiciously designed catalytic nanomaterials promise to be the next generation of electrochemical electrodes that offer cutting-edge performance, low energy consumption and aid in reducing overall carbon footprint. In this minireview, we highlight the recent developments related to the bimetallic Cu-based nanocatalysts and discuss their structure-property relationships. We focus on the design principles and parameters required for the enhancement of CO2 conversion efficiency, selectivity, and stability.

8.
ACS Appl Mater Interfaces ; 13(44): 51839-51848, 2021 Nov 10.
Article in English | MEDLINE | ID: mdl-33845573

ABSTRACT

The global ammonia yield is critical to the fertilizer industry as the global food demand is highly dependent on it, whereas, NH3 is also a key chemical for pharmaceutical, textile, plastic, explosive, and dye-making industries. At present, the demand for NH3 is fulfilled by the Haber-Bosch method, which consumes 1-3% of global energy and causes 0.5-1% CO2 emission every year. To reduce emissions and improve energy efficiency, the electrochemical nitrogen gas reduction reaction (N2RR) has received much attention and support after the funding announcement by the U.S. Department of Energy. In this work, we have created hollow CuAu nanoboxes with Cu-rich inner walls to improve the NH3 Faradaic efficiency in N2RR. These beveled nanoboxes are produced in different degrees of corner and edge etching, which produces both polyhedral and concave structures. In N2RR, the binary CuAu nanoboxes enhanced NH3 production compared to individual Au and Cu nanocubes. The results of DFT calculations suggest the Cu-rich inner walls in the hollow beveled CuAu nanoboxes play a major role in their performance by reducing the free energy ΔG*NNH for the potential-determining step to form *NNH (* + N2(g) + H+ + e- → *NNH). Meanwhile, the results in 10-cycle and solar-illuminated N2RR indicate the beveled CuAu nanoboxes are not only robust electrocatalysts but show promise in photocatalysis as well.

9.
ACS Appl Mater Interfaces ; 13(7): 8595-8605, 2021 Feb 24.
Article in English | MEDLINE | ID: mdl-33586960

ABSTRACT

Efficient control of the perovskite crystallization and passivation of the defects at the surface and grain boundaries of perovskite films have turned into the most important strategies to restrain charge recombination toward high-performance and long-term stability of perovskite solar cells (PSCs). In this paper, we employed a small amount of natural vitamin B (carnitine) with dual functional groups in the MAPbI3 precursor solution to simultaneously passivate the positive- and negative-charged ionic defects, which would be beneficial for charge transport in the PSCs. In addition, such methodology can efficiently ameliorate crystallinity with texture, better film morphology, high surface coverage, and longer charge carrier lifetime, as well as induce preferable energy level alignment. Benefiting from these advantages, the power conversion efficiency of PSCs significantly increases from 16.43 to 20.12% along with not only a higher open-circuit voltage of 1.12 V but also an outstanding fill factor of 82.78%.

10.
Commun Chem ; 4(1): 64, 2021 May 11.
Article in English | MEDLINE | ID: mdl-36697569

ABSTRACT

Palladium absorbs large volumetric quantities of hydrogen at room temperature and ambient pressure, making the palladium hydride system a promising candidate for hydrogen storage. Here, we use Bragg coherent diffraction imaging to map the strain associated with defects in three dimensions before and during the hydride phase transformation of an individual octahedral palladium nanoparticle, synthesized using a seed-mediated approach. The displacement distribution imaging unveils the location of the seed nanoparticle in the final nanocrystal. By comparing our experimental results with a finite-element model, we verify that the seed nanoparticle causes a characteristic displacement distribution of the larger nanocrystal. During the hydrogen exposure, the hydride phase is predominantly formed on one tip of the octahedra, where there is a high number of lower coordinated Pd atoms. Our experimental and theoretical results provide an unambiguous method for future structure optimization of seed-mediated nanoparticle growth and in the design of palladium-based hydrogen storage systems.

11.
Nanoscale ; 12(16): 8687-8692, 2020 Apr 30.
Article in English | MEDLINE | ID: mdl-32267279

ABSTRACT

We investigated lattice strain on alloyed surfaces using ∼10 nm core-shell nanoparticles with controlled size, shape, and composition. We developed a wet-chemistry method for synthesizing small octahedral PdPt alloy nanoparticles and Au@PdPt core-shell nanoparticles with Pd-Pt alloy shells and Au cores. Upon introduction of the Au core, the size and shape of the overall nanostructure and the composition of the alloyed PdPt were maintained, enabling the use of the electrooxidation of formic acid as a probe to compare the surface structures with different lattice strain. We have found that the structure of the alloyed surface is indeed impacted by the lattice strain generated by the Au core. To further reveal the impact of lattice strain, we fine-tuned the shell thickness. Then, we used synchrotron-based X-ray diffraction to investigate the degree of lattice strain and compared the observations with the results of the formic acid electrooxidation, suggesting that there is an optimal intermediate shell thickness for high catalytic activity.

12.
Angew Chem Int Ed Engl ; 59(26): 10574-10580, 2020 Jun 22.
Article in English | MEDLINE | ID: mdl-32196846

ABSTRACT

Controlling the surface composition of shaped bimetallic nanoparticles could offer precise tunability of geometric and electronic surface structure for new nanocatalysts. To achieve this goal, a platform for studying the intermixing process in a shaped nanoparticle was designed, using multilayered Pd-Ni-Pt core-shell nanocubes as precursors. Under mild conditions, the intermixing between Ni and Pt could be tuned by changing layer thickness and number, triggering intermixing while preserving nanoparticle shape. Intermixing of the two metals is monitored using transmission electron microscopy. The surface structure evolution is characterized using electrochemical methanol oxidation. DFT calculations suggest that the low-temperature mixing is enhanced by shorter diffusion lengths and strain introduced by the layered structure. The platform and insights presented are an advance toward the realization of shape-controlled multimetallic nanoparticles tailored to each potential application.

13.
J Colloid Interface Sci ; 545: 54-62, 2019 Jun 01.
Article in English | MEDLINE | ID: mdl-30870730

ABSTRACT

Sub-1 nm PtSn nanosheets of 0.6-0.9 nm in thickness were synthesized via a solution colloidal method and were applied as electrooxidation catalysts for methanol oxidation reaction (MOR) and ethanol oxidation (EOR) in alkaline and acid environments. Owing to the specific structural and compositional characteristics, the as-prepared PtSn nanosheets exhibits superior activity and durability relative to commercial Pt black and Pt/carbon catalysts. PtSn nanosheets not only exhibit an outstanding mass activity in MOR (871.6 mA mg Pt-1), which is 2.3 times (371 mA mg Pt-1) and 10.1 times (86.1 mA mg Pt-1) higher than that of commercial Pt/carbon and Pt black respectively, but also display an mass activity in EOR (673.6 mA mg Pt-1) with 5.3 times higher commercial Pt black (127.7 mA mg Pt-1) and 2.3 times higher than commercial Pt/C catalyst (295 mA mgPt-1). The reported value is the highest activity in both MOR and EOR examinations compared to the reported PtSn-based electrocatalysts,. The improved performance may be due to the highly-reactive exposed (1 1 1) facet sites resulted from its sub-1 nm 2D sheet like morphology.

14.
Langmuir ; 34(45): 13697-13704, 2018 11 13.
Article in English | MEDLINE | ID: mdl-30343577

ABSTRACT

The combined functionality of components in organic-inorganic hybrid nanomaterials render them efficient nanoreactors. However, the development in this field is limited due to a lack of synthetic avenues and systematic control of the growth kinetics of hybrid structures. In this work, we take advantage of an ionic switch for regio-control of Au-BINOL(1,1'-Bi-2-naphthol) hybrid nanostructures. Aromatic BINOL molecules assemble into nanospheres, concomitant with the growth of the Au nanocrystals. The morphological evolution of Au nanocrystals is solely controlled by the presence of halides in the synthetic system. Here we show that quaternary ammonium surfactants (CTAB or CTAC), not only bridging Au and BINOL, but also contributing to the formation of concentric or eccentric structures when their concentrations are tuned to the range of 10-5 to 10-3 M. This facile strategy offers the potential advantage of scalable production, with diverse functional organic-inorganic hybrid nanocomposites being produced based on the specific archetype of Au-BINOL hybrid nanocomposites.

15.
Opt Express ; 24(21): 23747-23754, 2016 Oct 17.
Article in English | MEDLINE | ID: mdl-27828211

ABSTRACT

We probe the acoustic vibrations of silver nanoprisms and gold nano-octahedrons in aqueous solution with four-wave mixing. The nonlinear optical response shows two acoustic vibrational modes: an in-plane mode of nanoprisms with vertexial expansion and contraction; an extensional mode of nano-octahedrons with longitudinal expansion and transverse contraction. The particles were also analyzed with electron microscopy and the acoustic resonance frequencies were then calculated by the finite element analysis, showing good agreement with experimental observations. The experimental mode frequencies also fit with theoretical approximations, which show an inverse dependence of the mode frequency on the edge length, for both nanoprisms and nano-octahedrons. This technique is promising for in situ monitoring of colloidal growth.

16.
Nano Lett ; 16(9): 5514-20, 2016 09 14.
Article in English | MEDLINE | ID: mdl-27575057

ABSTRACT

Au-Pd nanocrystals are an intriguing system to study the integrated functions of localized surface plasmon resonance (LSPR) and heterogeneous catalysis. Gold is both durable and can harness incident light energy to enhance the catalytic activity of another metal, such as Pd, via the SPR effect in bimetallic nanocrystals. Despite the superior catalytic performance of icosahedral (IH) nanocrystals compared to alternate morphologies, the controlled synthesis of alloy and core-shell IH is still greatly challenged by the disparate reduction rates of metal precursors and lack of continuous epigrowth on multiply twinned boundaries of such surfaces. Herein, we demonstrate a one-step strategy for the controlled growth of monodisperse Au-Pd alloy and core-shell IH with terraced shells by turning an ionic switch between [Br(-)]/[Cl(-)] in the coreduction process. The core-shell IH nanocrystals contain AuPd alloy cores and ultrathin Pd shells (<2 nm). They not only display more than double the activity of the commercial Pd catalysts in ethanol electrooxidation attributed to monatomic step terraces but also show SPR-enhanced conversion of 4-nitrophenol. This strategy holds promise toward the development of alternate bimetallic IH nanocrystals for electrochemical and plasmon-enhanced catalysis.

17.
Nanoscale ; 7(46): 19408-12, 2015 Dec 14.
Article in English | MEDLINE | ID: mdl-26538214

ABSTRACT

The creation of hierarchical porosity in metal-organic frameworks (MOFs) could benefit various applications of MOFs such as gas storage and separation. Having single-crystalline microcrystals instead of poly-crystalline composites is critical for these potential applications of MOFs with hierarchical porosity. We developed a room temperature synthetic method to generate uniform hollow and mesoporous zeolitic imidazolate framework-8 (ZIF-8) microcrystals with a single-crystalline structure via overgrowing a ZIF-8 shell in methanol solution on a ZIF-8 core with water adsorbed in the pores. The cavities formed as a result of the different solvent micro-environment. This double-solvent mediated overgrowth method could be applied to prepare other MOFs with hierarchical porosity.

18.
ACS Nano ; 8(9): 9368-78, 2014 Sep 23.
Article in English | MEDLINE | ID: mdl-25185075

ABSTRACT

Bimetallic nanoparticle catalysts provide enhanced activity, as combining metals allows tuning of electronic and geometric structure, but the enhancement may vary during the reaction because the nanoparticles can undergo metal migration under catalytic reaction conditions. Using cyclic voltammetry to track the surface composition over time, we carried out a detailed study of metal migration in a well-defined model Au-Pd core-shell nanocatalyst. When subjected to electrochemical conditions, Au migration from the core to the shell was observed. The effect of Pd shell thickness and electrolyte identity on the extent of migration was studied. Migration of metals during catalytic ethanol oxidation was found to alter the particle's surface composition and electronic structure, enhancing the core-shell particles' activity. We show that metal migration in core-shell nanoparticles is a phenomenon common to numerous electrochemical systems and must be considered when studying electrochemical catalysis.

19.
ACS Nano ; 8(3): 2812-9, 2014 Mar 25.
Article in English | MEDLINE | ID: mdl-24506773

ABSTRACT

We have developed a general synthetic route to encapsulate small molecules in monodisperse zeolitic imid-azolate framework-8 (ZIF-8) nanospheres for drug delivery. Electron microscopy, powder X-ray diffraction, and elemental analysis show that the small-molecule-encapsulated ZIF-8 nanospheres are uniform 70 nm particles with single-crystalline structure. Several small molecules, including fluorescein and the anticancer drug camptothecin, were encapsulated inside of the ZIF-8 framework. Evaluation of fluorescein-encapsulated ZIF-8 nanospheres in the MCF-7 breast cancer cell line demonstrated cell internalization and minimal cytotoxicity. The 70 nm particle size facilitates cellular uptake, and the pH-responsive dissociation of the ZIF-8 framework likely results in endosomal release of the small-molecule cargo, thereby rendering the ZIF-8 scaffold an ideal drug delivery vehicle. To confirm this, we demonstrate that camptothecin encapsulated ZIF-8 particles show enhanced cell death, indicative of internalization and intracellular release of the drug. To demonstrate the versatility of this ZIF-8 system, iron oxide nanoparticles were also encapsulated into the ZIF-8 nanospheres, thereby endowing magnetic features to these nanospheres.


Subject(s)
Drug Carriers/chemistry , Nanospheres/chemistry , Organometallic Compounds/chemistry , Capsules , Cell Survival/drug effects , Cetrimonium , Cetrimonium Compounds/chemistry , Drug Carriers/toxicity , Humans , Imidazoles/chemistry , MCF-7 Cells , Models, Molecular , Molecular Conformation , Nanospheres/toxicity , Organometallic Compounds/toxicity , Particle Size
20.
ChemSusChem ; 6(10): 1993-2000, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24106237

ABSTRACT

The effect of lattice strain on the catalytic properties of Pd nanoparticles is systematically studied. Synthetic strategies for the preparation of a series of shape-controlled Pd nanocrystals with lattice strain generated from different sources has been developed. All of these nanocrystals were created with the same capping agent under similar reaction conditions. First, a series of Pd nanoparticles was synthesized that were enclosed in {111} surfaces: Single-crystalline Pd octahedra, single-crystalline AuPd core-shell octahedra, and twinned Pd icosahedra. Next, various {100}-terminated particles were synthesized: Single-crystalline Pd cubes and single-crystalline AuPd core-shell cubes. Different extents of lattice strain were evident by comparing the X-ray diffraction patterns of these particles. During electrocatalysis, decreased potentials for CO stripping and increased current densities for formic-acid oxidation were observed for the strained nanoparticles. In the gas-phase hydrogenation of ethylene, the activities of the strained nanoparticles were lower than those of the single-crystalline Pd nanoparticles, perhaps owing to a larger amount of cetyl trimethylammonium bromide on the surface.


Subject(s)
Metal Nanoparticles/chemistry , Palladium/chemistry , Carbon Monoxide/chemistry , Catalysis , Ethylenes/chemistry , Formates/chemistry , Hydrogenation , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...