Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
Brain Stimul ; 17(2): 421-430, 2024.
Article in English | MEDLINE | ID: mdl-38574852

ABSTRACT

BACKGROUND: Studies in animals and humans have shown that cortical neuroplasticity can be modulated by increasing serotonin levels by administering selective serotonin reuptake inhibitors (SSRI). However, little is known about the mechanistic background, especially the contribution of intracortical inhibition and facilitation, which depend on gamma-aminobutyric acid (GABA) and glutamate. OBJECTIVE: We aimed to explore the relevance of drivers of plasticity (glutamate- and GABA-dependent processes) for the effects of serotonin enhancement on tDCS-induced plasticity in healthy humans. METHODS: A crossover, partially double-blinded, randomized, and sham-controlled study was conducted in 21 healthy right-handed individuals. In each of the 7 sessions, plasticity was induced via transcranial direct current stimulation (tDCS). Anodal, cathodal, and sham tDCS were applied to the left motor cortex under SSRI (20 mg/40 mg citalopram) or placebo. Short-interval cortical inhibition (SICI) and intracortical facilitation (ICF) were monitored by paired-pulse transcranial magnetic stimulation for 5-6 h after intervention. RESULTS: Under placebo, anodal tDCS-induced LTP-like plasticity decreased SICI and increased ICF. In contrast, cathodal tDCS-elicited LTD-like plasticity induced the opposite effect. Under 20 mg and 40 mg citalopram, anodal tDCS did not affect SICI largely, while ICF was enhanced and prolonged. For cathodal tDCS, citalopram converted the increase of SICI and decrease of ICF into antagonistic effects, and this effect was dosage-dependent since it lasted longer under 40 mg when compared to 20 mg. CONCLUSION: We speculate that the main effects of acute serotonergic enhancement on tDCS-induced plasticity, the increase and prolongation of LTP-like plasticity effects, involves mainly the glutamatergic system.


Subject(s)
Cross-Over Studies , Motor Cortex , Neuronal Plasticity , Selective Serotonin Reuptake Inhibitors , Transcranial Direct Current Stimulation , Humans , Neuronal Plasticity/physiology , Neuronal Plasticity/drug effects , Male , Adult , Double-Blind Method , Female , Motor Cortex/physiology , Motor Cortex/drug effects , Selective Serotonin Reuptake Inhibitors/pharmacology , Selective Serotonin Reuptake Inhibitors/administration & dosage , Young Adult , Transcranial Magnetic Stimulation , Serotonin/metabolism , Citalopram/pharmacology , Evoked Potentials, Motor/physiology , Evoked Potentials, Motor/drug effects , gamma-Aminobutyric Acid/metabolism , Glutamic Acid/metabolism
2.
Brain Stimul ; 16(2): 515-539, 2023.
Article in English | MEDLINE | ID: mdl-36828302

ABSTRACT

Neurophysiological effects of transcranial direct current stimulation (tDCS) have been extensively studied over the primary motor cortex (M1). Much less is however known about its effects over non-motor areas, such as the prefrontal cortex (PFC), which is the neuronal foundation for many high-level cognitive functions and involved in neuropsychiatric disorders. In this study, we, therefore, explored the transferability of cathodal tDCS effects over M1 to the PFC. Eighteen healthy human participants (11 males and 8 females) were involved in eight randomized sessions per participant, in which four cathodal tDCS dosages, low, medium, and high, as well as sham stimulation, were applied over the left M1 and left PFC. After-effects of tDCS were evaluated via transcranial magnetic stimulation (TMS)-electroencephalography (EEG), and TMS-elicited motor evoked potentials (MEP), for the outcome parameters TMS-evoked potentials (TEP), TMS-evoked oscillations, and MEP amplitude alterations. TEPs were studied both at the regional and global scalp levels. The results indicate a regional dosage-dependent nonlinear neurophysiological effect of M1 tDCS, which is not one-to-one transferable to PFC tDCS. Low and high dosages of M1 tDCS reduced early positive TEP peaks (P30, P60), and MEP amplitudes, while an enhancement was observed for medium dosage M1 tDCS (P30). In contrast, prefrontal low, medium and high dosage tDCS uniformly reduced the early positive TEP peak amplitudes. Furthermore, for both cortical areas, regional tDCS-induced modulatory effects were not observed for late TEP peaks, nor TMS-evoked oscillations. However, at the global scalp level, widespread effects of tDCS were observed for both, TMS-evoked potentials and oscillations. This study provides the first direct physiological comparison of tDCS effects applied over different brain areas and therefore delivers crucial information for future tDCS applications.


Subject(s)
Motor Cortex , Transcranial Direct Current Stimulation , Female , Humans , Male , Electroencephalography , Evoked Potentials, Motor/physiology , Motor Cortex/physiology , Prefrontal Cortex/physiology , Transcranial Direct Current Stimulation/methods , Transcranial Magnetic Stimulation/methods
3.
Brain Sci ; 13(1)2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36672118

ABSTRACT

One of the most visible effects of aging, even in healthy, normal aging, is a decline in motor performance. The range of strategies applicable to counteract this deterioration has increased. Transcranial direct current stimulation (tDCS), a non-invasive brain stimulation technique that can promote neuroplasticity, has recently gained attention. However, knowledge about optimized tDCS parameters in the elderly is limited. Therefore, in this study, we investigated the effect of different anodal tDCS intensities on motor sequence learning in the elderly. Over the course of four sessions, 25 healthy older adults (over 65 years old) completed the Serial Reaction Time Task (SRTT) while receiving 1, 2, or 3 mA of anodal or sham stimulation over the primary motor cortex (M1). Additionally, 24 h after stimulation, motor memory consolidation was assessed. The results confirmed that motor sequence learning in all tDCS conditions was maintained the following day. While increased anodal stimulation intensity over M1 showed longer lasting excitability enhancement in the elderly in a prior study, the combination of higher intensity stimulation with an implicit motor learning task showed no significant effect. Future research should focus on the reason behind this lack of effect and probe alternative stimulation protocols.

4.
Int. j. clin. health psychol. (Internet) ; 23(1): 1-11, ene.-abr. 2023. tab, graf, ilus
Article in English | IBECS | ID: ibc-213090

ABSTRACT

Background: Evidence indicates beneficial effects of aerobic exercise on motor learning performance, which might be caused by the impact of aerobic exercise on cortical excitability. It is thus suggested that physiological effects of aerobic exercise on cortical excitability determine the effects of aerobic exercise on motor learning. Nevertheless, respective results usually come from independent studies, and a prove of the causal relationship between neurophysiological and motor learning effects is still missing. This study aims to explore the impact of a single bout of aerobic exercise on brain physiology and motor learning, and the association between these phenomena in humans Method: The study was conducted in a cross-over design. In twenty healthy subjects, cortical excitability and motor learning were assessed before and after a single bout of aerobic exercise or a control intervention Results: The results show that aerobic exercise improved motor sequence learning and enhanced cortical excitability in humans. Furthermore, a correlation between the exercise-dependent alteration of cortical excitability (short intracortical inhibition, which is determined primarily by the GABAergic system) and improvement of motor learning has been found Discussion: The study found motor learning performance-improving effects of aerobic exercise, and these results might be explained by an exercised-caused alteration of cortical excitability, especially a reduction of GABA activity. (AU)


Subject(s)
Humans , Male , Female , Young Adult , Adult , Motor Activity , Exercise , Cortical Excitability , Cross-Over Studies , GABA Agents , Non-Smokers
5.
Int J Clin Health Psychol ; 23(1): 100333, 2023.
Article in English | MEDLINE | ID: mdl-36168600

ABSTRACT

Background: Evidence indicates beneficial effects of aerobic exercise on motor learning performance, which might be caused by the impact of aerobic exercise on cortical excitability. It is thus suggested that physiological effects of aerobic exercise on cortical excitability determine the effects of aerobic exercise on motor learning. Nevertheless, respective results usually come from independent studies, and a prove of the causal relationship between neurophysiological and motor learning effects is still missing. This study aims to explore the impact of a single bout of aerobic exercise on brain physiology and motor learning, and the association between these phenomena in humans. Method: The study was conducted in a cross-over design. In twenty healthy subjects, cortical excitability and motor learning were assessed before and after a single bout of aerobic exercise or a control intervention. Results: The results show that aerobic exercise improved motor sequence learning and enhanced cortical excitability in humans. Furthermore, a correlation between the exercise-dependent alteration of cortical excitability (short intracortical inhibition, which is determined primarily by the GABAergic system) and improvement of motor learning has been found. Discussion: The study found motor learning performance-improving effects of aerobic exercise, and these results might be explained by an exercised-caused alteration of cortical excitability, especially a reduction of GABA activity.

6.
Elife ; 112022 06 06.
Article in English | MEDLINE | ID: mdl-35666097

ABSTRACT

Sleep strongly affects synaptic strength, making it critical for cognition, especially learning and memory formation. Whether and how sleep deprivation modulates human brain physiology and cognition is not well understood. Here we examined how overnight sleep deprivation vs overnight sufficient sleep affects (a) cortical excitability, measured by transcranial magnetic stimulation, (b) inducibility of long-term potentiation (LTP)- and long-term depression (LTD)-like plasticity via transcranial direct current stimulation (tDCS), and (c) learning, memory, and attention. The results suggest that sleep deprivation upscales cortical excitability due to enhanced glutamate-related cortical facilitation and decreases and/or reverses GABAergic cortical inhibition. Furthermore, tDCS-induced LTP-like plasticity (anodal) abolishes while the inhibitory LTD-like plasticity (cathodal) converts to excitatory LTP-like plasticity under sleep deprivation. This is associated with increased EEG theta oscillations due to sleep pressure. Finally, we show that learning and memory formation, behavioral counterparts of plasticity, and working memory and attention, which rely on cortical excitability, are impaired during sleep deprivation. Our data indicate that upscaled brain excitability and altered plasticity, due to sleep deprivation, are associated with impaired cognitive performance. Besides showing how brain physiology and cognition undergo changes (from neurophysiology to higher-order cognition) under sleep pressure, the findings have implications for variability and optimal application of noninvasive brain stimulation.


Subject(s)
Motor Cortex , Transcranial Direct Current Stimulation , Brain , Cognition , Evoked Potentials, Motor/physiology , Humans , Motor Cortex/physiology , Neuronal Plasticity/physiology , Sleep , Sleep Deprivation , Transcranial Direct Current Stimulation/methods , Transcranial Magnetic Stimulation
7.
Exp Brain Res ; 240(6): 1743-1755, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35389072

ABSTRACT

Earlier research suggested that after 210 practice trials, the supplementary motor area (SMA) is involved in executing all responses of familiar 6-key sequences in a discrete sequence production (DSP) task (Verwey, Lammens, and van Honk, 2002). This was indicated by slowing of each response 20 and 25 min after the SMA had been stimulated for 20 min using repetitive transcranial magnetic stimulation (rTMS). The present study used a similar approach to assess the effects of TMS to the more posterior SMAproper at the end of practice and also 24 h later. As expected stimulation of SMAproper with 20 min of 1 Hz rTMS and 40 s of continuous theta burst stimulation (cTBS) immediately after practice slowed sequence execution relative to a sham TMS condition, but stimulation on the day following practice did not cause slowing. This indicates that offline consolidation makes learning robust against stimulation of SMAproper. Execution of all responses in the sequence was disrupted 0, 20, and 40 min after rTMS, but after cTBS, this occurred only after 40 min. The results suggest that it is implicit sequence knowledge that is processed by the SMAproper and that consolidates.


Subject(s)
Motor Cortex , Transcranial Magnetic Stimulation , Evoked Potentials, Motor , Humans , Learning , Motor Cortex/physiology , Transcranial Magnetic Stimulation/methods
8.
Cereb Cortex ; 32(23): 5478-5488, 2022 11 21.
Article in English | MEDLINE | ID: mdl-35165699

ABSTRACT

Dopamine is a key neuromodulator of neuroplasticity and an important neuronal substrate of learning, and memory formation, which critically involves glutamatergic N-methyl-D-aspartate (NMDA) receptors. Dopamine modulates NMDA receptor activity via dopamine D1 and D2 receptor subtypes. It is hypothesized that dopamine focuses on long-term potentiation (LTP)-like plasticity, i.e. reduces diffuse widespread but enhances locally restricted plasticity via a D2 receptor-dependent NMDA receptor activity reduction. Here, we explored NMDA receptor-dependent mechanisms underlying dopaminergic modulation of LTP-like plasticity induced by transcranial direct current stimulation (tDCS). Eleven healthy, right-handed volunteers received anodal tDCS (1 mA, 13 min) over the left motor cortex combined with dopaminergic agents (the D2 receptor agonist bromocriptine, levodopa for general dopamine enhancement, or placebo) and the partial NMDA receptor agonist D-cycloserine (dosages of 50, 100, and 200 mg, or placebo). Cortical excitability was monitored by transcranial magnetic stimulation-induced motor-evoked potentials. We found that LTP-like plasticity was abolished or converted into LTD-like plasticity via dopaminergic activation, but reestablished under medium-dose D-cycloserine. These results suggest that diffuse LTP-like plasticity is counteracted upon via D2 receptor-dependent reduction of NMDA receptor activity.


Subject(s)
Transcranial Direct Current Stimulation , Humans , Receptors, N-Methyl-D-Aspartate , Dopamine/pharmacology , Cycloserine/pharmacology , Evoked Potentials, Motor/physiology , Neuronal Plasticity/physiology , Receptors, Dopamine D2/metabolism
9.
Brain Stimul ; 15(2): 296-305, 2022.
Article in English | MEDLINE | ID: mdl-35085816

ABSTRACT

BACKGROUND: Neuromodulatory effects of transcranial direct current stimulation (tDCS) in older humans have shown heterogeneous results, possibly due to sub-optimal stimulation protocols associated with limited knowledge about optimized stimulation parameters in this age group. We systematically explored the association between the stimulation dosage of cathodal tDCS and induced after-effects on motor cortex excitability in the elderly. METHOD: Thirty-nine healthy volunteers in two age groups, namely Pre-Elderly (50-65 years) and Elderly (66-80 years), participated in the study. Ten sessions of cathodal tDCS, with a combination of four intensities (1, 2, 3 mA and sham) and three durations (15, 20, 30 min) were conducted over the M1 in each participant. Cortical excitability changes were monitored with TMS-induced motor evoked potentials (MEPs) for up to 2 h after stimulation. RESULTS: Motor cortex excitability was reduced by cathodal stimulation intensities of 1 and 3 mA in both age groups, in accordance with results observed in the younger age groups of previous studies. For the 2 mA stimulation condition, an age-dependent conversion of plasticity into a stimulation duration-dependent excitability enhancement was observed in the Pre-Elderly group, whereas in the Elderly group, LTD-like plasticity was preserved, or abolished, depending on stimulation duration. CONCLUSION: The LTD-like plasticity effects induced by cathodal tDCS originally described in young adults are also observable in older humans, but non-linearities of the resulting plasticity were partially preserved only in the Pre-Elderly, but not the Elderly group. These results aid in understanding age-dependent plasticity dynamics in humans, and to define more efficient tDCS protocols in the aging brain.


Subject(s)
Cortical Excitability , Motor Cortex , Transcranial Direct Current Stimulation , Aged , Cortical Excitability/physiology , Evoked Potentials, Motor/physiology , Humans , Middle Aged , Motor Cortex/physiology , Neuronal Plasticity/physiology , Transcranial Direct Current Stimulation/methods , Transcranial Magnetic Stimulation/methods , Young Adult
10.
Neuroimage ; 245: 118772, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34861393

ABSTRACT

Network-level synchronization of theta oscillations in the cerebral cortex is linked to many vital cognitive functions across daily life, such as executive functions or regulation of arousal and consciousness. However, while neuroimaging has uncovered the ubiquitous functional relevance of theta rhythms in cognition, there remains a limited set of techniques for externally enhancing and stabilizing theta in the human brain non-invasively. Here, we developed and employed a new phase-synchronized low-intensity electric and magnetic stimulation technique to induce and stabilize narrowband 6-Hz theta oscillations in a group of healthy human adult participants, and then demonstrated how this technique also enhances cognitive processing by assaying working memory. Our findings demonstrate a technological advancement of brain stimulation methods, while also validating the causal link between theta activity and concurrent cognitive behavior, which may ultimately help to not only explain mechanisms, but offer perspectives for restoring deficient theta-band network activity observed in neuropsychiatric diseases.


Subject(s)
Connectome , Cortical Synchronization/physiology , Frontal Lobe/physiology , Memory, Short-Term/physiology , Theta Rhythm/physiology , Transcranial Direct Current Stimulation , Transcranial Magnetic Stimulation , Adult , Female , Humans , Male , Young Adult
11.
Nat Commun ; 12(1): 4672, 2021 08 03.
Article in English | MEDLINE | ID: mdl-34344864

ABSTRACT

Circadian rhythms have natural relative variations among humans known as chronotype. Chronotype or being a morning or evening person, has a specific physiological, behavioural, and also genetic manifestation. Whether and how chronotype modulates human brain physiology and cognition is, however, not well understood. Here we examine how cortical excitability, neuroplasticity, and cognition are associated with chronotype in early and late chronotype individuals. We monitor motor cortical excitability, brain stimulation-induced neuroplasticity, and examine motor learning and cognitive functions at circadian-preferred and non-preferred times of day in 32 individuals. Motor learning and cognitive performance (working memory, and attention) along with their electrophysiological components are significantly enhanced at the circadian-preferred, compared to the non-preferred time. This outperformance is associated with enhanced cortical excitability (prominent cortical facilitation, diminished cortical inhibition), and long-term potentiation/depression-like plasticity. Our data show convergent findings of how chronotype can modulate human brain functions from basic physiological mechanisms to behaviour and higher-order cognition.


Subject(s)
Brain/physiology , Circadian Rhythm/physiology , Cognition/physiology , Adult , Attention/physiology , Behavior/physiology , Cortical Excitability , Female , Humans , Learning/physiology , Male , Memory, Short-Term/physiology , Neuronal Plasticity , Sleep/physiology , Transcranial Magnetic Stimulation , Young Adult
12.
Int J Neuropsychopharmacol ; 24(10): 787-797, 2021 10 23.
Article in English | MEDLINE | ID: mdl-34106250

ABSTRACT

BACKGROUND: The serotonergic system has an important impact on basic physiological and higher brain functions. Acute and chronic enhancement of serotonin levels via selective serotonin reuptake inhibitor administration impacts neuroplasticity in humans, as shown by its effects on cortical excitability alterations induced by non-invasive brain stimulation, including transcranial direct current stimulation (tDCS). Nevertheless, the interaction between serotonin activation and neuroplasticity is not fully understood, particularly considering dose-dependent effects. Our goal was to explore dosage-dependent effects of acute serotonin enhancement on stimulation-induced plasticity in healthy individuals. METHODS: Twelve healthy adults participated in 7 sessions conducted in a crossover, partially double-blinded, randomized, and sham-controlled study design. Anodal and cathodal tDCS was applied to the motor cortex under selective serotonin reuptake inhibitor (20 mg/40 mg citalopram) or placebo medication. Motor cortex excitability was monitored by single-pulse transcranial magnetic stimulation. RESULTS: Under placebo medication, anodal tDCS enhanced, and cathodal tDCS reduced, excitability for approximately 60-120 minutes after the intervention. Citalopram enhanced and prolonged the facilitation induced by anodal tDCS regardless of the dosage while turning cathodal tDCS-induced excitability diminution into facilitation. For the latter, prolonged effects were observed when 40 mg was administrated. CONCLUSIONS: Acute serotonin enhancement modulates tDCS after-effects and has largely similar modulatory effects on motor cortex neuroplasticity regardless of the specific dosage. A minor dosage-dependent effect was observed only for cathodal tDCS. The present findings support the concept of boosting the neuroplastic effects of anodal tDCS by serotonergic enhancement, a potential clinical approach for the treatment of neurological and psychiatric disorders.


Subject(s)
Selective Serotonin Reuptake Inhibitors/pharmacology , Transcranial Direct Current Stimulation/methods , Adult , Citalopram/pharmacology , Cortical Excitability/drug effects , Cross-Over Studies , Dose-Response Relationship, Drug , Female , Humans , Male , Motor Cortex/drug effects , Neuronal Plasticity/drug effects , Random Allocation , Young Adult
13.
Pharmaceutics ; 13(5)2021 May 13.
Article in English | MEDLINE | ID: mdl-34068263

ABSTRACT

Dopamine is crucial for neuroplasticity, which is considered to be the neurophysiological foundation of learning and memory. The specific effect of dopamine on plasticity such as long-term potentiation (LTP) and long-term depression (LTD) is determined by receptor subtype specificity, concentration level, and the kind of plasticity induction technique. In healthy human subjects, the dopamine precursor levodopa (L-DOPA) exerts a dosage-dependent non-linear effect on motor cortex plasticity. Low and high dosage L-DOPA impaired or abolished plasticity, while medium-dose preserved and reversed plasticity in previous studies. Similar dosage-dependent effects were also observed for selective D1-like and D2-like receptor activation that favor excitatory and inhibitory plasticity, respectively. However, such a dosage-dependent effect has not been explored for a nonselective dopamine agonist such as apomorphine in humans. To this aim, nonfocal and focal motor cortex plasticity induction using paired associative stimulation (PAS) and transcranial direct current stimulation (tDCS) were performed respectively in healthy participants under 0.1, 0.2, 0.3 mg apomorphine or placebo drug. Transcranial magnetic stimulation-elicited motor-evoked potentials were used to monitor motor cortical excitability alterations. We hypothesized that, similar to L-DOPA, apomorphine will affect motor cortex plasticity. The results showed that apomorphine with the applied dosages has an inhibitory effect for focal and nonfocal LTP-like and LTD-like plasticity, which was either abolished, diminished or reversed. The detrimental effect on plasticity induction under all dosages of apomorphine suggests a predominantly presynaptic mechanism of action of these dosages.

14.
Brain Stimul ; 14(3): 622-634, 2021.
Article in English | MEDLINE | ID: mdl-33798763

ABSTRACT

BACKGROUND: tDCS modulates cortical plasticity and has shown potential to improve cognitive/motor functions in healthy young humans. However, age-related alterations of brain structure and functions might require an adaptation of tDCS-parameters to achieve a targeted plasticity effect in older humans and conclusions obtained from young adults might not be directly transferable to older adults. Thus, our study aimed to systematically explore the association between tDCS-parameters and induced aftereffects on motor cortical excitability to determine optimal stimulation protocols for older individuals, as well as to investigate age-related differences of motor cortex plasticity in two different age groups of older adults. METHODS: 32 healthy, volunteers from two different age groups of Young-Old (50-65 years, n = 16) and Old-Old (66-80 years, n = 16) participated in this study. Anodal tDCS was applied over the primary motor cortex, with respective combinations of three intensities (1, 2, and 3 mA) and durations (15, 20, and 30 min), in a sham-controlled cross-over design. Cortical excitability alterations were monitored by single-pulse TMS-induced MEPs until the next day morning after stimulation. RESULTS: All active stimulation conditions resulted in a significant enhancement of motor cortical excitability in both age groups. The facilitatory aftereffects of anodal tDCS did not significantly differ between age groups. We observed prolonged plasticity in the late-phase range for two protocols with the highest stimulation intensity (i.e., 3 mA-20 min, 3 mA-30 min). CONCLUSIONS: Our study highlights the role of stimulation dosage in tDCS-induced neuroplastic aftereffects in the motor cortex of healthy older adults and delivers crucial information about optimized tDCS protocols in the domain of the primary motor cortex. Our findings might set the grounds for the development of optimal stimulation protocols to reinstate neuroplasticity in different cortical areas and induce long-lasting, functionally relevant plasticity in normal aging and in pathological conditions, which would require however systematic tDCS titration studies over respective target areas.


Subject(s)
Cortical Excitability , Motor Cortex , Transcranial Direct Current Stimulation , Aged , Aged, 80 and over , Evoked Potentials, Motor , Humans , Middle Aged , Neuronal Plasticity , Transcranial Magnetic Stimulation
15.
Brain Stimul ; 14(3): 579-587, 2021.
Article in English | MEDLINE | ID: mdl-33781955

ABSTRACT

BACKGROUND: Neural oscillations in the cerebral cortex are associated with a range of cognitive processes and neuropsychiatric disorders. However, non-invasively modulating oscillatory activity remains technically challenging, due to limited strength, duration, or non-synchronization of stimulation waveforms with endogenous rhythms. OBJECTIVE: We hypothesized that applying controllable phase-synchronized repetitive transcranial magnetic stimulation pulses (rTMS) with alternating currents (tACS) may induce and stabilize neuro-oscillatory resting-state activity at targeted frequencies. METHODS: Using a novel circuit to precisely synchronize rTMS pulses with phase of tACS, we empirically tested whether combined, 10-Hz prefrontal bilateral stimulation could induce and stabilize 10-Hz oscillations in the bilateral prefrontal cortex (PFC). 25 healthy participants took part in a repeated-measures design. Whole-brain resting-state EEG in eyes-open (EO) and eyes-closed (EC) was recorded before (baseline), immediately (1-min), and 15- and 30-min after stimulation. Bilateral, phase-synchronized rTMS aligned to the positive tACS peak was compared with rTMS at tACS trough, with bilateral tACS or rTMS on its own, and to sham. RESULTS: 10-Hz resting-state PFC power increased significantly with peak-synchronized rTMS + tACS (EO: 44.64%, EC: 46.30%, p < 0.05) compared to each stimulation protocol on its own, and sham, with effects spanning between prefrontal and parietal regions and sustaining throughout 30-min. No effects were observed with the sham protocol. Moreover, rTMS timed to the negative tACS trough did not induce local or global changes in oscillations. CONCLUSION: Phase-synchronizing rTMS with tACS may be a viable approach for inducing and stabilizing neuro-oscillatory activity, particularly in scenarios where endogenous oscillatory tone is attenuated, such as disorders of consciousness or major depression.


Subject(s)
Transcranial Direct Current Stimulation , Brain , Electroencephalography , Humans , Prefrontal Cortex , Transcranial Magnetic Stimulation
16.
Int J Neuropsychopharmacol ; 24(6): 490-498, 2021 07 14.
Article in English | MEDLINE | ID: mdl-33617635

ABSTRACT

BACKGROUND: Noradrenaline has an important role as a neuromodulator of the central nervous system. Noradrenergic enhancement was recently shown to enhance glutamate-dependent cortical facilitation and long term potentiation-like plasticity. As cortical excitability and plasticity are closely linked to various cognitive processes, here we aimed to explore whether these alterations are associated with respective cognitive performance changes. Specifically, we assessed the impact of noradrenergic enhancement on motor learning (serial reaction time task), attentional processes (Stroop interference task), and working memory performance (n-back letter task). METHODS: The study was conducted in a cross-over design. Twenty-five healthy humans performed the respective cognitive tasks after a single dose of the noradrenaline reuptake inhibitor reboxetine or placebo administration. RESULTS: The results show that motor learning, attentional processes, and working memory performance in healthy participants were improved by reboxetine application compared with placebo. CONCLUSIONS: The results of the present study thus suggest that noradrenergic enhancement can improve memory formation and executive functions in healthy humans. The respective changes are in line with related effects of noradrenaline on cortical excitability and plasticity.


Subject(s)
Adrenergic Uptake Inhibitors/pharmacology , Attention/drug effects , Learning/drug effects , Memory, Short-Term/drug effects , Motor Activity/drug effects , Nootropic Agents/pharmacology , Norepinephrine , Reboxetine/pharmacology , Adrenergic Uptake Inhibitors/administration & dosage , Adult , Cross-Over Studies , Female , Humans , Male , Nootropic Agents/administration & dosage , Reboxetine/administration & dosage , Young Adult
17.
Brain Stimul ; 13(6): 1588-1599, 2020.
Article in English | MEDLINE | ID: mdl-32949779

ABSTRACT

BACKGROUND: Cognitive, and motor performance are reduced in aging, especially with respect to acquisition of new knowledge, which is associated with a neural plasticity decline. Animal models show a reduction of long-term potentiation, but not long-term depression, in higher age. Findings in humans are more heterogeneous, with some studies showing respective deficits, but others not, or mixed results, for plasticity induced by non-invasive brain stimulation. One reason for these heterogeneous results might be the inclusion of different age ranges in these studies. In addition, a systematic detailed comparison of the age-dependency of neural plasticity in humans is lacking so far. OBJECTIVE: We aimed to explore age-dependent plasticity alterations in adults systematically by discerning between younger and older participants in our study. METHODS: We recruited three different age groups (Young: 18-30, Pre-Elderly: 50-65, and Elderly: 66-80 years). Anodal, cathodal, or sham transcranial direct current stimulation (tDCS) was applied over the primary motor cortex with 1 mA for 15 min to induce neuroplasticity. Cortical excitability was monitored by single-pulse transcranial magnetic stimulation as an index of plasticity. RESULTS: For anodal tDCS, the results show a significant excitability enhancement, as compared to sham stimulation, for both, Young and the Pre-Elderly groups, while no LTP-like plasticity was obtained in the Elderly group by the applied stimulation protocol. Cathodal tDCS induced significant excitability-diminishing plasticity in all age groups. CONCLUSION: Our study provides further insight in age-related differences of plasticity in healthy humans, which are similar to those obtained in animal models. The decline of LTP-like plasticity in higher age could contribute to cognitive deficits observed in aging.


Subject(s)
Aging/physiology , Motor Cortex/physiology , Neuronal Plasticity/physiology , Transcranial Direct Current Stimulation/methods , Transcranial Magnetic Stimulation/methods , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Cortical Excitability/physiology , Cross-Over Studies , Evoked Potentials, Motor/physiology , Female , Humans , Long-Term Potentiation/physiology , Male , Middle Aged , Single-Blind Method , Young Adult
18.
Eur Neuropsychopharmacol ; 38: 63-72, 2020 09.
Article in English | MEDLINE | ID: mdl-32768154

ABSTRACT

Transcranial direct current stimulation (tDCS) induces polarity-dependent neuroplasticity: with conventional protocols, anodal tDCS results in excitability enhancement while cathodal stimulation reduces excitability. However, partially non-linear responses are observed with increased stimulation intensity and/or duration. Cathodal tDCS with 2 mA for 20 min reverses the excitability-diminishing plasticity induced by stimulation with 1 mA into excitation, while cathodal tDCS with 3 mA again results in excitability diminution. Since tDCS generates NMDA receptor-dependent neuroplasticity, such non-linearity could be explained by different levels of calcium concentration changes, which have been demonstrated in animal models to control for the directionality of plasticity. In this study, we tested the calcium dependency of non-linear cortical plasticity induced by cathodal tDCS in human subjects in a placebo controlled, double-blind and randomized design. The calcium channel blocker flunarizine was applied in low (2.5 mg), medium (5 mg) or high (10 mg) dosages before 20 min cathodal motor cortex tDCS with 3 mA in 12 young healthy subjects. After-effects of stimulation were monitored with TMS-induced motor evoked potentials (MEPs) until 2 h after stimulation. The results show that motor cortical excitability-diminishing after-effects of stimulation were unchanged, diminished, or converted to excitability enhancement with low, medium and high dosages of flunarizine. These results suggest a calcium-dependency of the directionality of tDCS-induced neuroplasticity, which may have relevant implications for future basic and clinical research.


Subject(s)
Calcium Channel Blockers/pharmacology , Calcium Channels/physiology , Evoked Potentials, Motor/physiology , Motor Cortex/physiology , Neuronal Plasticity/physiology , Transcranial Direct Current Stimulation/methods , Adult , Cross-Over Studies , Dose-Response Relationship, Drug , Double-Blind Method , Electrodes , Evoked Potentials, Motor/drug effects , Female , Humans , Male , Motor Cortex/drug effects , Neuronal Plasticity/drug effects , Transcranial Direct Current Stimulation/instrumentation , Young Adult
19.
BMC Psychiatry ; 20(1): 372, 2020 07 16.
Article in English | MEDLINE | ID: mdl-32677923

ABSTRACT

BACKGROUND: Application of repetitive transcranial magnetic stimulation (rTMS) for treating obsessive-compulsive disorder (OCD) has been promising and approved by the Food and Drug Administration in 2018, but effects differ between patients. Knowledge about clinical predictors of rTMS response may help to increase clinical efficacy but is not available so far. METHODS: In a retrospective study, we investigated the efficacy of rTMS over the dorsolateral prefrontal cortex (DLPFC) or supplementary motor area (SMA) in 65 pharmaco-resistant OCD outpatients recruited for rTMS treatment from July 2015 to May 2017. Patients received either SMA rTMS (n = 38) or bilateral DLPFC rTMS (n = 27) in case of reporting higher affective and depressive symptoms in addition to the primary OCD symptoms. OCD symptoms and depression/anxiety states were measured at baseline (before the 1st session) and after the 20th session of rTMS. Additionally, we performed a binary logistic regression analysis on the demographic and clinical variables based on the Yale-Brown Obsessive-Compulsive Scale (Y-BOCS) 3-factor and 2-factor models and individual items to investigate potential predictors of rTMS response. RESULTS: Patients' scores in Y-BOCS and Beck anxiety/depression inventories were significantly decreased following rTMS treatment. 46.2% of all patients responded to rTMS, based on the criterion of at least a 30% reduction in Y-BOCS scores. There was no significant difference between response rates of patients in DLPFC and SMA groups. No significant demographic predictors of rTMS efficacy were identified. The factors "obsession severity", "resistance" and "disturbance" and the "interference due to obsessions" and "resistance against compulsions" items of the Y-BOCS significantly predicted response to rTMS. CONCLUSIONS: In patients with less intrusive/interfering thoughts, and low scores in the "obsession severity", "disturbance", and "resistance" factors, rTMS might have superior effects. Identifying clinical and non-clinical predictors of response is relevant to personalize and adapt rTMS protocols in pharmaco-resistant OCD patients. Interpretation of rTMS efficacy should be done with caution due to the lack of a sham intervention condition.


Subject(s)
Motor Cortex , Obsessive-Compulsive Disorder , Humans , Obsessive-Compulsive Disorder/therapy , Prefrontal Cortex , Retrospective Studies , Transcranial Magnetic Stimulation , Treatment Outcome
20.
Front Aging Neurosci ; 12: 189, 2020.
Article in English | MEDLINE | ID: mdl-32714178

ABSTRACT

Background: Age is an important factor that impacts the variability of tDCS effects. Objective/Hypothesis: To compare effects of anodal (a)-tDCS over the left dorsolateral prefrontal cortex (DLPFC), and primary motor cortex (M1) in adolescents, adults, and elderly on heat pain threshold (HPT; primary outcome) and the working memory (WM; secondary outcome). We hypothesized that the effect of tDCS on HPT and WM performance would be the largest in adolescents because their pre-frontal cortex is more prone to neuroplasticity. Methods: We included 30 healthy women within the age ranges of 15-16 (adolescents, n = 10), 30-40 (adults, n = 10), and 60-70 (elderly, n = 10) years. In this crossover single-blinded study, participants received three interventions applied over the DLPF and M1. The active stimulation intensity was two mA for 30 min. From 20 min of stimulation onset, the tDCS session was coupled with an online n-back task. The a-tDCS and sham were applied in a random sequence, with a washout time of a minimum 7 days between each trial. HPT was evaluated before and after stimulation. The WM performance with an n-back task was assessed after the tDCS session. Results: A Generalized Estimating Equation (GEE) model revealed a significant effect of the a-tDCS over the left DLPFC to reduce the HPT in adolescents compared with sham. It increased the pain perception significantly [a large effect size (ES) of 1.09)]. In the adults, a-tDCS over M1 enhanced the HPT significantly (a large ES of 1.25) compared to sham. No significant effect for HPT was found in the elderly. Response time for hits was reduced for a-tDCS over the DLPFC in adolescents, as compared to the other two age groups. Conclusions: These findings suggest that a-tDCS modulates pain perception and WM differentially according to age and target area of stimulation. In adolescents, anodal stimulation over the DLPFC increased the pain perception, while in adults, the stimulation over the M1 increased the pain threshold. Thus, they elucidate the impact of tDCS for different age groups and can help to define what is the appropriate intervention according to age in further clinical trials. Clinical Trial Registration: www.ClinicalTrials.gov, Identifier: NCT04328545.

SELECTION OF CITATIONS
SEARCH DETAIL
...