Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 139
Filter
1.
Article in English | MEDLINE | ID: mdl-38780268

ABSTRACT

Oxytocin (OXT), a neuropeptide originating from the hypothalamus and traditionally associated with peripheral functions in parturition and lactation, has emerged as a pivotal player in the central regulation of the autonomic nervous system (ANS). This comprehensive ANS, comprising sympathetic, parasympathetic, and enteric components, intricately combines sympathetic and parasympathetic influences to provide unified control. The central oversight of sympathetic and parasympathetic outputs involves a network of interconnected regions spanning the neuroaxis, playing a pivotal role in the real-time regulation of visceral function, homeostasis, and adaptation to challenges. This review unveils the significant involvement of the central OXT system in modulating autonomic functions, shedding light on diverse subpopulations of OXT neurons within the paraventricular nucleus of the hypothalamus and their intricate projections. The narrative progresses from the basics of central ANS regulation to a detailed discussion of the central controls of sympathetic and parasympathetic outflows. The subsequent segment focuses specifically on the central OXT system, providing a foundation for exploring the central role of OXT in ANS regulation. This review synthesizes current knowledge, paving the way for future research endeavors to unravel the full scope of autonomic control and understand multifaceted impact of OXT on physiological outcomes.


Subject(s)
Autonomic Nervous System , Oxytocin , Oxytocin/metabolism , Oxytocin/physiology , Humans , Autonomic Nervous System/physiology , Animals
2.
J Med Virol ; 96(3): e29556, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38511554

ABSTRACT

Neutrophil extracellular traps (NETs) play a role in innate pathogen defense and also trigger B-cell response by providing antigens. NETs have been linked to vaccine-induced thrombotic thrombocytopenia. We postulated a potential link between NET biomarkers, NET-promoting autoantibodies, and adverse events (AEs) after COVID-19 vaccine boosters. Healthy donors (HDs) who received ChAdOx1-S (A), mRNA-1273 (M), or recombinant protein (MVC-COV1901) vaccines at the National Taiwan University Hospital between 2021 and 2022 were recruited. We measured serial NET-associated biomarkers, citrullinated-histone3 (citH3), and myeloperoxidase (MPO)-DNA. Serum citH3 and MPO-DNA were significantly or numerically higher in HDs who reported AEs (n = 100, booster Day 0/Day 30, p = 0.01/p = 0.03 and p = 0.30/p = 0.35, respectively). We also observed a positive correlation between rash occurrence in online diaries and elevated citH3. A linear mixed model also revealed significantly higher citH3 levels in mRNA-1273/ChAdOx1-S recipients than MVC-COV1901 recipients. Significant positive correlations were observed between the ratios of anti-heparin platelet factor 4 and citH3 levels on Booster Day 0 and naïve and between the ratios of anti-NET IgM and citH3 on Booster Day 30/Day 0 in the AA-M and MM-M group, respectively. The increased levels of citH3/MPO-DNA accompanied by NET-promoting autoantibodies suggest a potential connection between mRNA-1273/ChAdOx1-S vaccines and cardiovascular complications. These findings provide insights for risk assessments of future vaccines.


Subject(s)
COVID-19 , Extracellular Traps , Humans , Extracellular Traps/metabolism , COVID-19 Vaccines/adverse effects , Autoantibodies , 2019-nCoV Vaccine mRNA-1273 , RNA, Messenger/genetics , RNA, Messenger/metabolism , COVID-19/prevention & control , COVID-19/metabolism , Biomarkers , ChAdOx1 nCoV-19 , Vaccination , DNA/metabolism , Adenoviridae
3.
ACS Chem Neurosci ; 15(3): 527-538, 2024 02 07.
Article in English | MEDLINE | ID: mdl-38269400

ABSTRACT

Hair emerged as a biospecimen for long-term investigation of endogenous metabolic perturbations, reflecting the chemical composition circulating in the blood over the past months. Despite its potential, the use of human hair for metabolomics in Alzheimer's disease (AD) research remains limited. Here, we performed both untargeted and targeted metabolomic approaches to profile the key metabolic pathways in the hair of 5xFAD mice, a widely used AD mouse model. Furthermore, we applied the discovered metabolites to human subjects. Hair samples were collected from 6-month-old 5xFAD mice, a stage marked by widespread accumulation of amyloid plaques in the brain, followed by sample preparation and high-resolution mass spectrometry analysis. Forty-five discriminatory metabolites were discovered in the hair of 6-month-old 5xFAD mice compared to wild-type control mice. Enrichment analysis revealed three key metabolic pathways: arachidonic acid metabolism, sphingolipid metabolism, and alanine, aspartate, and glutamate metabolism. Among these pathways, six metabolites demonstrated significant differences in the hair of 2-month-old 5xFAD mice, a stage prior to the onset of amyloid plaque deposition. These findings suggest their potential involvement in the early stages of AD pathogenesis. When evaluating 45 discriminatory metabolites for distinguishing patients with AD from nondemented controls, a combination of l-valine and arachidonic acid significantly differentiated these two groups, achieving a 0.88 area under the curve. Taken together, these findings highlight the potential of hair metabolomics in identifying disease-specific metabolic alterations and developing biomarkers for improving disease detection and monitoring.


Subject(s)
Alzheimer Disease , Humans , Mice , Animals , Infant , Alzheimer Disease/metabolism , Arachidonic Acid , Mice, Transgenic , Metabolomics/methods , Metabolome , Mass Spectrometry , Disease Models, Animal
4.
Adv Sci (Weinh) ; 10(35): e2302345, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37964413

ABSTRACT

Although the relationships of cerebrovascular hemodynamic dysfunction with neurodegenerative diseases remain unclear, many studies have indicated that poor cerebral perfusion accelerates the progression of neurodegenerative diseases, such as Alzheimer's disease (AD). Small animal models are widely used in AD research. However, providing an imaging modality with a high spatiotemporal resolution and sufficiently large field of view to assess cerebrovascular hemodynamics in vivo remains a challenge. The present study proposes a novel technique for high-spatiotemporal-resolution vector micro-Doppler imaging (HVµDI) based on contrast-free ultrafast high frequency ultrasound imaging to visualize the cerebrovascular hemodynamics of the mouse, with a data acquisition time of 0.4 s, a minimal detectable vessel size of 38 µm, and a temporal resolution of 500 Hz. In vivo experiments are conducted on wild-type and AD mice. Cerebrovascular hemodynamics are quantified using the cerebral vascular density, diameter, velocity, tortuosity, cortical flow pulsatility, and instant flow direction variations. Results reveal that AD significantly change the cerebrovascular hemodynamics. HVµDI offers new opportunities for in vivo analysis of cerebrovascular hemodynamics in neurodegenerative pathologies in preclinical animal research.


Subject(s)
Alzheimer Disease , Mice , Animals , Alzheimer Disease/diagnostic imaging , Hemodynamics , Disease Models, Animal , Ultrasonography
5.
Life Sci ; 328: 121900, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37391066

ABSTRACT

AIMS: Epidemiological evidence suggests that comorbidity of obesity and depression is extremely common and continues to grow in prevalence. However, the mechanisms connecting these two conditions are unknown. In this study, we explored how treatment with KATP channel blocker glibenclamide (GB) or the well-known metabolic regulator FGF21 impact male mice with high-fat diet (HFD)-induced obesity and depressive-like behaviors. MATERIALS AND METHODS: Mice were fed with HFD for 12 weeks and then treated with recombinant FGF21 protein by infusion for 2 weeks, followed by intraperitoneal injection of 3 mg/kg recombinant FGF21 once per day for 4 days. Measurements were made of catecholamine levels, energy expenditure, biochemical endpoints and behavior tests, including sucrose preference and forced swim tests were. Alternatively, animals were infused with GB into brown adipose tissue (BAT). The WT-1 brown adipocyte cell line was used for molecular studies. KEY FINDINGS: Compared to HFD controls, HFD + FGF21 mice exhibited less severe metabolic disorder symptoms, improved depressive-like behaviors, and more extensive mesolimbic dopamine projections. FGF21 treatment also rescued HFD-induced dysregulation of FGF21 receptors (FGFR1 and co-receptor ß-klotho) in the ventral tegmental area (VTA), and it altered dopaminergic neuron activity and morphology in HFD-fed mice. Importantly, we also found that FGF21 mRNA level and FGF21 release were increased in BAT after administration of GB, and GB treatment to BAT reversed HFD-induced dysregulation of FGF21 receptors in the VTA. SIGNIFICANCE: GB administration to BAT stimulates FGF21 production in BAT, corrects HFD-induced dysregulation of FGF21 receptor dimers in VTA dopaminergic neurons, and attenuates depression-like symptoms.


Subject(s)
Adipose Tissue, Brown , Depression , Fibroblast Growth Factors , Glyburide , Hypoglycemic Agents , Obesity , Animals , Male , Mice , Adipose Tissue, Brown/drug effects , Depression/complications , Depression/drug therapy , Diet, High-Fat , Fibroblast Growth Factors/administration & dosage , Fibroblast Growth Factors/genetics , Glyburide/administration & dosage , Hypoglycemic Agents/administration & dosage , Metabolic Diseases/drug therapy , Mice, Inbred C57BL , Neurons/drug effects , Neurons/pathology , Obesity/complications , Obesity/drug therapy , Obesity/pathology , Receptors, Fibroblast Growth Factor/metabolism , Ventral Tegmental Area/drug effects , Ventral Tegmental Area/pathology , Recombinant Proteins/administration & dosage
6.
Clin Immunol ; 252: 109655, 2023 07.
Article in English | MEDLINE | ID: mdl-37257547

ABSTRACT

Increased serum advanced glycation end products (AGEs) are commonly found in the patients with Diabetes mellitus (DM), aging-related diseases, and immune-mediated diseases. These diseases are notorious for vasculopathy, immune dysfunctions, and low-grade inflammation mimicking inflamm-aging. However, the molecular basis of inflamm-aging related to AGEs remains elucidation. In this study, we incubated human serum albumin (HSA) and glucose at 37 °C in 5% CO2 incubator for 0-180 days to generate AGE-HSA. We found the mixture gradually changing the color from transparancy to brown color and increased molecular weight during incubation. The pH value also gradually decreased from 7.2 to 5.4 irrelevant to ionic charge or [Ca2+] concentration, but dependent on gradual glycation of the alkaline amino acids, lysine and arginine. Functionally, 40 µg/mL of AGE-HSA decreased IL-2 production from human Jurkat T cell line via suppressing p-STAT3, p-STAT4, and p-STAT6 with an increased tendency of senescence-associated ß-galactosidase (SA-ßgal) expression but irrelevant to change of Th1/Th2/Treg subpopulations. In contrast, AGE-HSA enhanced CC motif chemokine ligand 5 (CCL-5), IL-8, macrophage migration inhibitor factor (MIF), and interleukin 1 receptor antagonist (IL-1Ra) but suppressed SA-ßgal expression by human macrophage-like THP-1 cells. Interestingly, AGE-HSA abrogated the HSA-induced soluble intercellular adhesion molecules 1 (sICAM-1), sE-selectin and endothelin release from human coronary artery endothelial cells (HCAEC) and enhanced SA-ßgal expression. The accelerated and increased HSA glycations by individual inflammation-related cytokine such as IL-2, IL-6, IL-17, TGF-ß, or TNF-α in the in vitro study reflect increased serum AGE levels in patients with immune-mediated diseases. In conclusion, AGE-HSA can exert immunosuppresive, inflammatory and vasculopathic effects mimicking inflamm-aging in these patients.


Subject(s)
Endothelial Cells , Serum Albumin , Humans , Serum Albumin/metabolism , Interleukin-2 , Glycation End Products, Advanced/chemistry , Glycation End Products, Advanced/metabolism , Glycation End Products, Advanced/pharmacology , Serum Albumin, Human , Inflammation , Aging
7.
Sci Rep ; 13(1): 5511, 2023 04 04.
Article in English | MEDLINE | ID: mdl-37016048

ABSTRACT

Monocytes are a major population of circulating immune cells that play a crucial role in producing pro-inflammatory cytokines in the body. The actions of monocytes are known to be influenced by the combinations and concentrations of certain fatty acids (FAs) in blood and dietary fats. However, systemic comparisons of the effects of FAs on cytokine secretion by monocytes have not be performed. In this study, we compared how six saturated FAs (SFAs), two monounsaturated FAs (MUFAs), and seven polyunsaturated FAs (PUFAs) modulate human THP-1 monocyte secretion of TNF, IL-1ß, and IL-6 in the absence or presence of lipopolysaccharide. SFAs generally stimulated resting THP-1 cells to secrete pro-inflammatory cytokines, with stearic acid being the most potent species. In contrast, MUFAs and PUFAs inhibited lipopolysaccharide-induced secretion of pro-inflammatory cytokines. Interestingly, the inhibitory potentials of MUFAs and PUFAs followed U-shaped (TNF and IL-1ß) or inverted U-shaped (IL-6) dose-response curves. Among the MUFAs and PUFAs that were analyzed, docosahexaenoic acid (C22:6 n-3) exhibited the largest number of double bonds and was found to be the most potent anti-inflammatory compound. Together, our findings reveal that the chemical compositions and concentrations of dietary FAs are key factors in the intricate regulation of monocyte-mediated inflammation.


Subject(s)
Cytokines , Monocytes , Humans , Cytokines/pharmacology , Lipopolysaccharides/pharmacology , Interleukin-6/pharmacology , Fatty Acids/pharmacology , Fatty Acids, Unsaturated/pharmacology , Dietary Fats/pharmacology
8.
J Alzheimers Dis ; 93(1): 349-363, 2023.
Article in English | MEDLINE | ID: mdl-36970901

ABSTRACT

BACKGROUND: Research reported exercise could reduce Alzheimer's disease (AD) symptoms in human and animals. However, the molecular mechanism of exercise training via transcriptomic analysis was unclear especially in AD in the cortex area. OBJECTIVE: Investigate potential significant pathways in the cortex area that were affected by exercise during AD. METHODS: RNA-seq analysis, differential expressed genes, functional enrichment analysis, and GSOAP clustering analysis were performed in the isolated cerebral cortex from eight 3xTg AD mice (12 weeks old) randomly and equally divided into control (AD) and exercise training (AD-EX) group. Swimming exercise training in AD-EX group was conducted 30 min/day for 1 month. RESULTS: There were 412 genes significant differentially expressed in AD-EX group compared to AD group. Top 10 upregulated genes in AD-EX group against AD group mostly correlated with neuroinflammation, while top 10 downregulated genes mostly had connection with vascularization, membrane transport, learning memory, and chemokine signal. Pathway analysis revealed the upregulated interferon alpha beta signaling in AD-EX had association with cytokines delivery in microglia cells compared to AD and top 10 upregulated genes involved in interferon alpha beta were Usp18, Isg15, Mx1, Mx2, Stat1, Oas1a, and Irf9; The downregulated extracellular matrix organization in AD-EX had correlation with Aß and neuron cells interaction and Vtn was one of the top 10 downregulated genes involved in this pathway. CONCLUSION: Exercise training influenced 3xTg mice cortex through interferon alpha beta signaling upregulation and extracellular matrix organization downregulation based on transcriptomics analysis.


Subject(s)
Alzheimer Disease , Mice , Animals , Humans , Alzheimer Disease/genetics , Alzheimer Disease/therapy , Alzheimer Disease/metabolism , Transcriptome , Cerebral Cortex/metabolism , Gene Expression Profiling , Interferon-alpha/genetics , Interferon-alpha/metabolism , Disease Models, Animal , Mice, Transgenic , Amyloid beta-Peptides/metabolism , Ubiquitin Thiolesterase/metabolism
9.
Ultrasonics ; 131: 106949, 2023 May.
Article in English | MEDLINE | ID: mdl-36773481

ABSTRACT

The meningeal lymphatic system drains the cerebrospinal fluid from the subarachnoid space to the cervical lymphatic system, primarily to the deep cervical lymph nodes. Perturbations of the meningeal lymphatic system have been linked to various neurologic disorders. A method to specifically monitor the flow of meningeal lymphatic system in real time is unavailable. In the present study, we adopted the high-frequency ultrasound (HFUS) with 1,1'diocatadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI)-loaded microbubble and FePt@PLGA nanoparticle contrast agents to evaluate the flow of the meningeal lymphatic system in 2-month-old mice. Statistical analysis was performed to identify changes of HFUS signals among the microbubbles, FePt@PLGA nanoparticles, and saline control groups. Approximately 15 min from the start of intracerebroventricular injection of contrast agents, their signals were evident at the deep cervical lymph nodes and lasted for at least 60 min. These signals were validated on the basis of the presence of DiI and Fe signals in the deep cervical lymph nodes. Ligation of afferent lymphatic vessels to the deep cervical lymph nodes eliminated the HFUS signals. Moreover, ablation of lymphatic vessels near the confluence of sinuses decreased the HFUS signals in the deep cervical lymph nodes. Glioma-bearing mice that exhibited reduced lymphatic vessel immunostaining signals near the confluence of sinuses had lowered HFUS signals in the deep cervical lymph nodes within 60 min. The proposed method provides a minimally invasive approach to monitor the qualities of the meningeal lymphatic system in real time as well as the progression of the meningeal lymphatic system in various brain disease animal models.


Subject(s)
Lymph Nodes , Lymphatic Vessels , Mice , Animals , Lymph Nodes/pathology , Contrast Media , Lymphatic System/diagnostic imaging , Lymphatic Vessels/diagnostic imaging , Ultrasonography
10.
Int J Mol Sci ; 23(23)2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36498839

ABSTRACT

When WWOX is downregulated in middle age, aggregation of a protein cascade, including TRAPPC6AΔ (TPC6AΔ), TIAF1, and SH3GLB2, may start to occur, and the event lasts more than 30 years, which results in amyloid precursor protein (APP) degradation, amyloid beta (Aß) generation, and neurodegeneration, as shown in Alzheimer's disease (AD). Here, by treating neuroblastoma SK-N-SH cells with neurotoxin MPP+, upregulation and aggregation of TPC6AΔ, along with aggregation of TIAF1, SH3GLB2, Aß, and tau, occurred. MPP+ is an inducer of Parkinson's disease (PD), suggesting that TPC6AΔ is a common initiator for AD and PD pathogenesis. Zfra, a 31-amino-acid zinc finger-like WWOX-binding protein, is known to restore memory deficits in 9-month-old triple-transgenic (3xTg) mice by blocking the aggregation of TPC6AΔ, SH3GLB2, tau, and amyloid ß, as well as inflammatory NF-κB activation. The Zfra4-10 peptide exerted a strong potency in preventing memory loss during the aging of 3-month-old 3xTg mice up to 9 months, as determined by a novel object recognition task (ORT) and Morris water maize analysis. Compared to age-matched wild type mice, 11-month-old Wwox heterozygous mice exhibited memory loss, and this correlates with pT12-WWOX aggregation in the cortex. Together, aggregation of pT12-WWOX may link to TPC6AΔ aggregation for AD progression, with TPC6AΔ aggregation being a common initiator for AD and PD progression.


Subject(s)
Adaptor Proteins, Signal Transducing , Alzheimer Disease , Amyloid beta-Peptides , Parkinson Disease , Animals , Mice , Adaptor Proteins, Signal Transducing/metabolism , Alzheimer Disease/metabolism , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Disease Models, Animal , Memory Disorders , Mice, Transgenic , Signal Transduction , tau Proteins/metabolism , Parkinson Disease/metabolism
12.
Mol Psychiatry ; 27(11): 4372-4384, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36180573

ABSTRACT

Comorbidity exists between metabolic disorders and depressive syndrome with unclear mechanisms. To characterize the causal relationship, we adopted a 12-week high-fat diet (HFD) to induce metabolic disorder and depressive phenotypes in mice. Initially, we identified an enhanced glutamatergic input in the nucleus accumbens of HFD mice. Retrograde tracing and chemogenetic inhibition showed that the hyperactive ventral hippocampal glutamatergic afferents to the nucleus accumbens determined the exhibition of depression-like behavior in HFD mice. Using lentiviral knockdown and overexpression approaches, we proved that HFD-induced downregulation of glial glutamate transporters, GLAST and GLT-1, contributed to the observed circuit maladaptations and subsequent depression-like behaviors. Finally, we identified a potential therapeutic agent, riluzole, which could mitigate the HFD-induced behavioral deficits by normalizing the expressions of GLAST and GLT-1 and ventral hippocampal glutamatergic afferents to the nucleus accumbens. Overall, astrocyte-mediated disturbance in glutamatergic transmission underlies the metabolic disorder-related depressive syndrome and represents a therapeutic target for this subtype of depressive mood disorders.


Subject(s)
Diet, High-Fat , Nucleus Accumbens , Animals , Mice , Nucleus Accumbens/metabolism , Diet, High-Fat/adverse effects , Mice, Inbred C57BL , Hippocampus/metabolism , Astrocytes/metabolism
13.
Virulence ; 13(1): 1379-1392, 2022 12.
Article in English | MEDLINE | ID: mdl-35876630

ABSTRACT

The role of secretion chaperone-regulated virulence proteins in the pathogenesis of infective endocarditis (IE) induced by viridans streptococci such as Streptococcus mutans is unclear. In this study, we investigated the contribution of the foldase protein PrsA, a putative parvulin-type peptidyl-prolyl isomerase, to the pathogenesis of S. mutans-induced IE. We found that a prsA-deficient strain had reduced virulence in terms of formation of vegetation on damaged heart valves, as well as reduced autolysis activity, eDNA release and biofilm formation capacity. The secretion and surface exposure of AtlA in vitro was reduced in the prsA-deficient mutant strain, and complementation of recombinant AtlA in the culture medium restored a wild type biofilm phenotype of the prsA-deficient mutant strain. This result suggests that secretion and surface localization of AtlA is regulated by PrsA during biofilm formation. Together, these results demonstrate that S. mutans PrsA could regulate AtlA-mediated eDNA release to contribute to biofilm formation in the pathogenesis of IE.


Subject(s)
Endocarditis, Bacterial , Endocarditis , Bacterial Proteins/metabolism , Biofilms , DNA/metabolism , Humans , Streptococcus mutans/genetics
14.
J Microbiol Immunol Infect ; 55(5): 860-869, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35577736

ABSTRACT

BACKGROUND: Neutrophil extracellular traps (NETs) play important roles in sepsis and deep-seated infections, but whether NET formation correlates with clinical outcomes of patients with streptococcal bloodstream infections (BSIs) is unclear. METHODS: We analyzed serum levels of complexes of myeloperoxidase and DNA (MPO-DNA) in patients with streptococcal-BSIs. In vitro assay of NET induction by serum from BSI patients was performed. RESULTS: MPO-DNA values for the Streptococci-BSI group (n = 59) were significantly higher than those for healthy controls (p < 0.00001) and matched control groups (n = 59, p = 0.004). The rate of higher MPO-DNA levels (>1.87 µg/mL) were higher in abscess-prone streptococcal groups (streptococcus milleri group) (72.2% vs. 52.5%, p = 0.02). For patients with BSIs due to highly infective endocarditis (IE)-prone pathogens, the values of serum MPO-DNA were also higher in patients diagnosed of IE compared to their counterparts (p = 0.009). Notably, serum from patients with leukopenia could induce higher amounts of in vitro NET formation, despite having low MPO-DNA levels, suggesting that NET formation could be influenced by WBC counts. Therefore, we combined WBC counts with MPO-DNA to predict all-cause 30-day mortality in patients with commensal streptococcal-BSIs. The mortality risk was lowest among patients who had neither high MPO-DNA levels nor abnormal WBC counts (p = 0.058). Furthermore, this group of patients also had a favorable composite outcome consisting of major adverse cardiovascular events (MACE) and all-cause mortality (p = 0.026). CONCLUSION: Together, these study data suggested that serum MPO-DNA can be a biomarker for predicting a composite outcome consisting of MACE and all-cause mortality in patients with commensal streptococcal-BSIs.


Subject(s)
Bacteremia , Cardiovascular Diseases , Extracellular Traps , Sepsis , Humans , Peroxidase , Biomarkers , DNA , Neutrophils
15.
Biomedicines ; 10(4)2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35453523

ABSTRACT

Polymorphonuclear neutrophils (PMNs) are the most abundant white blood cells in the circulation. These cells act as the fast and powerful defenders against environmental pathogenic microbes to protect the body. In addition, these innate inflammatory cells can produce a number of cytokines/chemokines/growth factors for actively participating in the immune network and immune homeostasis. Many novel biological functions including mitogen-induced cell-mediated cytotoxicity (MICC) and antibody-dependent cell-mediated cytotoxicity (ADCC), exocytosis of microvesicles (ectosomes and exosomes), trogocytosis (plasma membrane exchange) and release of neutrophil extracellular traps (NETs) have been successively discovered. Furthermore, recent investigations unveiled that PMNs act as a double-edged sword to exhibit paradoxical activities on pro-inflammation/anti-inflammation, antibacteria/autoimmunity, pro-cancer/anticancer, antiviral infection/COVID-19-induced immunothrombotic dysregulation. The NETs released from PMNs are believed to play a pivotal role in these paradoxical activities, especially in the cytokine storm and immunothrombotic dysregulation in the recent SARS-CoV-2 pandemic. In this review, we would like to discuss in detail the molecular basis for these strange activities of PMNs.

16.
Immun Inflamm Dis ; 10(5): e610, 2022 05.
Article in English | MEDLINE | ID: mdl-35478445

ABSTRACT

INTRODUCTION: Diabetes mellitus emerges as a global health crisis and is related to the development of neurodegenerative diseases. Microglia, a population of macrophages-like cells, govern immune defense in the central nervous system. Activated microglia are known to play active roles in the pathogenesis of neurodegenerative diseases. METHODS: This study aimed to investigate the effects of high glucose on low-dose lipopolysaccharide (LPS)-induced activations of inflammation-related signaling molecules in cultured BV2 microglial cells. RESULTS: Compared to cells cultured in the normal glucose medium (NGM, 5.5 mM), the LPS-induced activation of NF-κB lasted longer in cells cultured in high glucose medium (HGM, 25 mM). HGM also enhanced the expression of inducible nitric oxide synthase (iNOS). Among the mitogen-activated protein kinases, HGM enhanced the LPS-induced phosphorylation of p38 without affecting the phosphorylation of Erk1/2 or JNK. BV2 cells cultured in HGM expressed higher levels of TLR4 than those cells cultured in NGM. CONCLUSION: High glucose aggravated LPS-induced inflammatory responses of microglia via enhancing the TLR4/p38 pathway and prolonging the activation of NF-κB/iNOS signaling. Controlling blood glucose levels is advised to manage neuroinflammation and related neurodegenerative diseases.


Subject(s)
Lipopolysaccharides , Neurodegenerative Diseases , Glucose/adverse effects , Glucose/metabolism , Humans , Inflammation , Lipopolysaccharides/toxicity , Microglia/metabolism , NF-kappa B/metabolism , Neurodegenerative Diseases/metabolism , Toll-Like Receptor 4/metabolism
17.
Cells ; 11(3)2022 01 30.
Article in English | MEDLINE | ID: mdl-35159290

ABSTRACT

Parkinson's disease (PD) is an age-related neurodegenerative disease caused by a selective loss of dopaminergic (DA) neurons in the substantia nigra (SN). Microglial activation is implicated in the pathogenesis of PD. This study aimed to characterize the role of microglial activation in aging-related nigral DA neuron loss and motor deficits in mice. We showed that, compared to 3-month-old mice, the number of DA neurons in the SN and the expression of dopamine transporter (DAT) in the striatum decreased during the period of 9 to 12 months of age. Motor deficits and microglial activation in the SN were also evident during these months. The number of DA neurons was negatively correlated with the degrees of microglial activation. The inhibition of age-related microglial activation by ibuprofen during these 3 months decreased DA neuron loss in the SN. Eliminating the microglia prevented systemic inflammation-induced DA neuron death. Forcing mice to run during these 3 months inhibited microglial activation and DA neuron loss. Blocking the brain-derived neurotrophic factor (BDNF) signaling eliminated the exercise-induced protective effects. In conclusion, nigral DA neurons were susceptible to local microglial activation. Running exercise upregulated BDNF-TrkB signaling and inhibited microglial activation during aging. Long-term exercise can be considered as a non-pharmacological strategy to ameliorate microglial activation and related neurodegeneration.


Subject(s)
Neurodegenerative Diseases , Parkinson Disease , Animals , Brain-Derived Neurotrophic Factor/metabolism , Dopaminergic Neurons/metabolism , Mice , Microglia/metabolism , Nerve Degeneration/pathology , Neurodegenerative Diseases/metabolism , Parkinson Disease/metabolism , Substantia Nigra/metabolism
18.
Breast ; 61: 35-42, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34894465

ABSTRACT

Targeted therapies against human epidermal growth factor receptor 2 (HER2) are associated with increased interstitial lung disease (ILD). Trastuzumab, lapatinib, pertuzumab, and trastuzumab emtansine have markedly extended HER2 breast cancer survival but current knowledge on how these HER2-targeted agents induce interstitial lung disease is still poorly defined due to limited cases in the literature. Physicians mostly managed this complication by dose interruption, dose de-escalation, or discontinuation with success. In 2019, the FDA had granted accelerated approval on trastuzumab deruxtecan (T-Dxd) in HER2 breast cancer in the late line setting. Severe ILD incidence rate was over ten percent and led to fatal outcomes in 2.2% of patients in the T-Dxd trial. Searching for biomarkers to detect ILD incidence before it becomes clinically fulminant or for treatment response monitoring is of high clinical value. A Case of life-threatening trastuzumab-induced ILD was encountered in our facility. The ILD was confirmed to be antineutrophil cytoplasmic antibody (ANCA) pulmonary capillaritis. The biomarker of neutrophil extracellular traps (NETs), serum MPO-DNA complex, showed a good correlation with the clinical severity. Soon after B cell depleting agent rituximab usage, the serum MPO-DNA outperformed ANCA autoantibody and maintained its correlation with clinical severity. In addition to the trastuzumab-induced ILD case, a prospective cohort in our facility also confirmed the usefulness of MPO-DNA in monitoring vasculitis activity. We postulated that upfront testing with biomarkers of vasculitis during HER2 targeted treatment with high ILD incidence may be beneficial in the future.


Subject(s)
Breast Neoplasms , Lung Diseases, Interstitial , Vasculitis , Antibodies, Antineutrophil Cytoplasmic , Breast Neoplasms/drug therapy , Female , Follow-Up Studies , Humans , Lung Diseases, Interstitial/chemically induced , Neutrophils , Prospective Studies , Receptor, ErbB-2 , Trastuzumab/adverse effects
19.
FASEB J ; 36(1): e22130, 2022 01.
Article in English | MEDLINE | ID: mdl-34959259

ABSTRACT

This study aimed to investigate the causal relationship between chronic ingestion of a high-fat diet (HFD)-induced secretion of glucocorticoids (GCs) and the development of non-alcoholic fatty liver disease (NAFLD). We have produced a strain of transgenic mice (termed L/L mice) that have normal levels of circulating corticosterone (CORT), the major type of GCs in rodents, but unlike wild-type (WT) mice, their circulating CORT was not affected by HFD. Compared to WT mice, 12-week HFD-induced fatty liver was less pronounced with higher plasma levels of triglycerides in L/L mice. These changes were reversed by CORT supplement to L/L mice. By analyzing a sort of lipid metabolism-related proteins, we found that expressions of the hepatic cluster of differentiation 36 (CD36) were upregulated by HFD-induced CORT and involved in CORT-mediated fatty liver. Dexamethasone, an agonist of the glucocorticoid receptor (GR), upregulated expressions of CD36 in HepG2 hepatocytes and facilitated lipid accumulation in the cells. In conclusion, the fat ingestion-induced release of CORT contributes to NAFLD. This study highlights the pathogenic role of CORT-mediated upregulation of hepatic CD 36 in diet-induced NAFLD.


Subject(s)
Diet, High-Fat/adverse effects , Glucocorticoids/blood , Non-alcoholic Fatty Liver Disease/blood , Non-alcoholic Fatty Liver Disease/chemically induced , Triglycerides/blood , Animals , Glucocorticoids/genetics , Hep G2 Cells , Humans , Mice , Mice, Mutant Strains , Non-alcoholic Fatty Liver Disease/genetics , Triglycerides/genetics
20.
Cells ; 10(12)2021 12 02.
Article in English | MEDLINE | ID: mdl-34943909

ABSTRACT

Systemic sclerosis (SSc) is a chronic connective tissue disorder characterized by immune dysregulation, chronic inflammation, vascular endothelial cell dysfunction, and progressive tissue fibrosis of the skin and internal organs. Moreover, increased cancer incidence and accelerated aging are also found. The increased cancer incidence is believed to be a result of chromosome instability. Accelerated cellular senescence has been confirmed by the shortening of telomere length due to increased DNA breakage, abnormal DNA repair response, and telomerase deficiency mediated by enhanced oxidative/nitrative stresses. The immune dysfunctions of SSc patients are manifested by excessive production of proinflammatory cytokines IL-1, IL-6, IL-17, IFN-α, and TNF-α, which can elicit potent tissue inflammation followed by tissue fibrosis. Furthermore, a number of autoantibodies including anti-topoisomerase 1 (anti-TOPO-1), anti-centromere (ACA or anti-CENP-B), anti-RNA polymerase enzyme (anti-RNAP III), anti-ribonuclear proteins (anti-U1, U2, and U11/U12 RNP), anti-nucleolar antigens (anti-Th/T0, anti-NOR90, anti-Ku, anti-RuvBL1/2, and anti-PM/Scl), and anti-telomere-associated proteins were also found. Based on these data, inflamm-aging caused by immune dysfunction-mediated inflammation exists in patients with SSc. Hence, increased cellular senescence is elicited by the interactions among excessive oxidative stress, pro-inflammatory cytokines, and autoantibodies. In the present review, we will discuss in detail the molecular basis of chromosome instability, increased oxidative stress, and functional adaptation by deranged immunome, which are related to inflamm-aging in patients with SSc.


Subject(s)
Aging/genetics , Fibrosis/genetics , Inflammation/genetics , Scleroderma, Systemic/genetics , Aging/immunology , Aging/pathology , Autoantibodies/immunology , Endothelial Cells/pathology , Fibrosis/complications , Fibrosis/immunology , Fibrosis/pathology , Humans , Immune System Diseases/complications , Immune System Diseases/genetics , Immune System Diseases/immunology , Immune System Diseases/pathology , Inflammation/complications , Inflammation/immunology , Inflammation/pathology , Inflammation Mediators , Scleroderma, Systemic/complications , Scleroderma, Systemic/immunology , Scleroderma, Systemic/pathology , Skin Diseases/complications , Skin Diseases/genetics , Skin Diseases/immunology , Skin Diseases/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...