Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2023 Sep 28.
Article in English | MEDLINE | ID: mdl-36993480

ABSTRACT

The versatility of somatosensation arises from heterogeneous dorsal root ganglion (DRG) neurons. However, soma transcriptomes of individual human DRG (hDRG) neurons-critical in-formation to decipher their functions-are lacking due to technical difficulties. Here, we developed a novel approach to isolate individual hDRG neuron somas for deep RNA sequencing (RNA-seq). On average, >9,000 unique genes per neuron were detected, and 16 neuronal types were identified. Cross-species analyses revealed remarkable divergence among pain-sensing neurons and the existence of human-specific nociceptor types. Our deep RNA-seq dataset was especially powerful for providing insight into the molecular mechanisms underlying human somatosensation and identifying high potential novel drug targets. Our dataset also guided the selection of molecular markers to visualize different types of human afferents and the discovery of novel functional properties using single-cell in vivo electrophysiological recordings. In summary, by employing a novel soma sequencing method, we generated an unprecedented hDRG neuron atlas, providing new insights into human somatosensation, establishing a critical foundation for translational work, and clarifying human species-species properties.

2.
Pain ; 164(6): 1245-1257, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36718807

Subject(s)
Nociceptors , Pain , Humans , Pruritus
3.
BMC Biol ; 20(1): 112, 2022 05 13.
Article in English | MEDLINE | ID: mdl-35550069

ABSTRACT

BACKGROUND: MAPK/ERK signaling is a well-known mediator of extracellular stimuli controlling intracellular responses to growth factors and mechanical cues. The critical requirement of MAPK/ERK signaling for embryonic stem cell maintenance is demonstrated, but specific functions in progenitor regulation during embryonic development, and in particular kidney development remain largely unexplored. We previously demonstrated MAPK/ERK signaling as a key regulator of kidney growth through branching morphogenesis and normal nephrogenesis where it also regulates progenitor expansion. Here, we performed RNA sequencing-based whole-genome expression analysis to identify transcriptional MAPK/ERK targets in two distinct renal populations: the ureteric bud epithelium and the nephron progenitors. RESULTS: Our analysis revealed a large number (5053) of differentially expressed genes (DEGs) in nephron progenitors and significantly less (1004) in ureteric bud epithelium, reflecting likely heterogenicity of cell types. The data analysis identified high tissue-specificity, as only a fraction (362) of MAPK/ERK targets are shared between the two tissues. Tissue-specific MAPK/ERK targets participate in the regulation of mitochondrial energy metabolism in nephron progenitors, which fail to maintain normal mitochondria numbers in the MAPK/ERK-deficient tissue. In the ureteric bud epithelium, a dramatic decline in progenitor-specific gene expression was detected with a simultaneous increase in differentiation-associated genes, which was not observed in nephron progenitors. Our experiments in the genetic model of MAPK/ERK deficiency provide evidence that MAPK/ERK signaling in the ureteric bud maintains epithelial cells in an undifferentiated state. Interestingly, the transcriptional targets shared between the two tissues studied are over-represented by histone genes, suggesting that MAPK/ERK signaling regulates cell cycle progression and stem cell maintenance through chromosome condensation and nucleosome assembly. CONCLUSIONS: Using tissue-specific MAPK/ERK inactivation and RNA sequencing in combination with experimentation in embryonic kidneys, we demonstrate here that MAPK/ERK signaling maintains ureteric bud tip cells, suggesting a regulatory role in collecting duct progenitors. We additionally deliver new mechanistic information on how MAPK/ERK signaling regulates progenitor maintenance through its effects on chromatin accessibility and energy metabolism.


Subject(s)
Kidney , Nephrons , Epithelial Cells , Female , Gene Expression Profiling , Humans , Kidney/metabolism , Nephrons/metabolism , Organ Specificity , Pregnancy
4.
Development ; 148(10)2021 05 15.
Article in English | MEDLINE | ID: mdl-34032268

ABSTRACT

Nephron endowment, defined during the fetal period, dictates renal and related cardiovascular health throughout life. We show here that, despite its negative effects on kidney growth, genetic increase of GDNF prolongs the nephrogenic program beyond its normal cessation. Multi-stage mechanistic analysis revealed that excess GDNF maintains nephron progenitors and nephrogenesis through increased expression of its secreted targets and augmented WNT signaling, leading to a two-part effect on nephron progenitor maintenance. Abnormally high GDNF in embryonic kidneys upregulates its known targets but also Wnt9b and Axin2, with concomitant deceleration of nephron progenitor proliferation. Decline of GDNF levels in postnatal kidneys normalizes the ureteric bud and creates a permissive environment for continuation of the nephrogenic program, as demonstrated by morphologically and molecularly normal postnatal nephron progenitor self-renewal and differentiation. These results establish that excess GDNF has a bi-phasic effect on nephron progenitors in mice, which can faithfully respond to GDNF dosage manipulation during the fetal and postnatal period. Our results suggest that sensing the signaling activity level is an important mechanism through which GDNF and other molecules contribute to nephron progenitor lifespan specification.


Subject(s)
Glial Cell Line-Derived Neurotrophic Factor/metabolism , Nephrons/embryology , Nephrons/growth & development , Organogenesis/genetics , Wnt Signaling Pathway/genetics , Animals , Axin Protein/metabolism , Cell Differentiation/genetics , Glial Cell Line-Derived Neurotrophic Factor/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Stem Cells/cytology , Wnt Proteins/metabolism
5.
Nat Commun ; 12(1): 1510, 2021 03 08.
Article in English | MEDLINE | ID: mdl-33686078

ABSTRACT

Distinct types of dorsal root ganglion sensory neurons may have unique contributions to chronic pain. Identification of primate sensory neuron types is critical for understanding the cellular origin and heritability of chronic pain. However, molecular insights into the primate sensory neurons are missing. Here we classify non-human primate dorsal root ganglion sensory neurons based on their transcriptome and map human pain heritability to neuronal types. First, we identified cell correlates between two major datasets for mouse sensory neuron types. Machine learning exposes an overall cross-species conservation of somatosensory neurons between primate and mouse, although with differences at individual gene level, highlighting the importance of primate data for clinical translation. We map genomic loci associated with chronic pain in human onto primate sensory neuron types to identify the cellular origin of chronic pain. Genome-wide associations for chronic pain converge on two different neuronal types distributed between pain disorders that display different genetic susceptibilities, suggesting both unique and shared mechanisms between different pain conditions.


Subject(s)
Chronic Pain/genetics , Chronic Pain/metabolism , Sensory Receptor Cells/metabolism , Transcriptome , Animals , Female , Ganglia, Spinal , Gene Expression , Humans , Macaca mulatta , Male , Mice , Neurons , Primates
6.
Neuron ; 108(3): 395-397, 2020 11 11.
Article in English | MEDLINE | ID: mdl-33181070

ABSTRACT

Using electrical acupuncture, Liu et al. show how electrical stimulation of primary somatosensory neurons at different body regions can tap into discreet autonomic circuits and, depending on the parameters, initiate either a pro- or anti-inflammatory response.


Subject(s)
Acupuncture Therapy , Electroacupuncture , Autonomic Nervous System , Electric Stimulation , Reflex
7.
STAR Protoc ; 1(1): 100030, 2020 06 19.
Article in English | MEDLINE | ID: mdl-33111081

ABSTRACT

Vagal sensory neurons relay viscero- and somatosensory information from within the body and play a key role in maintaining physiological homeostasis. We recently characterized the diversity of vagal sensory neurons in the mouse using a single-cell transcriptomics approach. Here, we provide an in-depth protocol for the extraction of mouse vagal ganglia and the production of high-quality single-cell suspensions from this tissue. This effective protocol can also be applied for use with other peripheral and central neuron populations with few modifications. For complete details on the use and execution of this protocol, please refer to Kupari et al. (2019).


Subject(s)
Cell Culture Techniques/methods , Gene Expression Profiling/methods , Sensory Receptor Cells/cytology , Single-Cell Analysis/methods , Vagus Nerve/cytology , Animals , Cells, Cultured , Mice , Sensory Receptor Cells/metabolism , Transcriptome , Vagus Nerve/metabolism
8.
Cell Rep ; 27(8): 2508-2523.e4, 2019 05 21.
Article in English | MEDLINE | ID: mdl-31116992

ABSTRACT

Sensory functions of the vagus nerve are critical for conscious perceptions and for monitoring visceral functions in the cardio-pulmonary and gastrointestinal systems. Here, we present a comprehensive identification, classification, and validation of the neuron types in the neural crest (jugular) and placode (nodose) derived vagal ganglia by single-cell RNA sequencing (scRNA-seq) transcriptomic analysis. Our results reveal major differences between neurons derived from different embryonic origins. Jugular neurons exhibit fundamental similarities to the somatosensory spinal neurons, including major types, such as C-low threshold mechanoreceptors (C-LTMRs), A-LTMRs, Aδ-nociceptors, and cold-, and mechano-heat C-nociceptors. In contrast, the nodose ganglion contains 18 distinct types dedicated to surveying the physiological state of the internal body. Our results reveal a vast diversity of vagal neuron types, including many previously unanticipated types, as well as proposed types that are consistent with chemoreceptors, nutrient detectors, baroreceptors, and stretch and volume mechanoreceptors of the respiratory, gastrointestinal, and cardiovascular systems.


Subject(s)
Nodose Ganglion/metabolism , Vagus Nerve/metabolism , Animals , Female , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neurons/cytology , Neurons/metabolism , Nodose Ganglion/cytology , Sequence Analysis, RNA , Single-Cell Analysis , Transcriptome , Vagus Nerve/cytology
9.
Stem Cell Reports ; 11(4): 912-928, 2018 10 09.
Article in English | MEDLINE | ID: mdl-30220628

ABSTRACT

The in vivo niche and basic cellular properties of nephron progenitors are poorly described. Here we studied the cellular organization and function of the MAPK/ERK pathway in nephron progenitors. Live-imaging of ERK activity by a Förster resonance energy transfer biosensor revealed a dynamic activation pattern in progenitors, whereas differentiating precursors exhibited sustained activity. Genetic experiments demonstrate that MAPK/ERK activity controls the thickness, coherence, and integrity of the nephron progenitor niche. Molecularly, MAPK/ERK activity regulates niche organization and communication with extracellular matrix through PAX2 and ITGA8, and is needed for CITED1 expression denoting undifferentiated status. MAPK/ERK activation in nephron precursors propels differentiation by priming cells for distal and proximal fates induced by the Wnt and Notch pathways. Thus, our results demonstrate a mechanism through which MAPK/ERK activity controls both progenitor maintenance and differentiation by regulating a distinct set of targets, which maintain the biomechanical milieu of tissue-residing progenitors and prime precursors for nephrogenesis.


Subject(s)
Cell Differentiation , Extracellular Signal-Regulated MAP Kinases/metabolism , Nephrons/cytology , Stem Cell Niche , Stem Cells/cytology , Animals , Apoptosis , Biosensing Techniques , Body Patterning , Cell Proliferation , Cell Self Renewal , Enzyme Activation , Gene Expression Regulation, Developmental , Integrin alpha Chains/metabolism , Mice , Organogenesis , PAX2 Transcription Factor/metabolism , Stem Cells/metabolism
10.
J Exp Med ; 215(7): 1947-1963, 2018 07 02.
Article in English | MEDLINE | ID: mdl-29899037

ABSTRACT

To understand the developmental trajectories in early lymphocyte differentiation, we identified differentially expressed surface markers on lineage-negative lymphoid progenitors (LPs). Single-cell polymerase chain reaction experiments allowed us to link surface marker expression to that of lineage-associated transcription factors (TFs) and identify GFRA2 and BST1 as markers of early B cells. Functional analyses in vitro and in vivo as well as single-cell gene expression analyses supported that surface expression of these proteins defined distinct subpopulations that include cells from both the classical common LPs (CLPs) and Fraction A compartments. The formation of the GFRA2-expressing stages of development depended on the TF EBF1, critical both for the activation of stage-specific target genes and modulation of the epigenetic landscape. Our data show that consecutive expression of Ly6D, GFRA2, and BST1 defines a developmental trajectory linking the CLP to the CD19+ progenitor compartment.


Subject(s)
B-Lymphocytes/cytology , B-Lymphocytes/immunology , Cell Compartmentation , Lymphopoiesis , Stem Cells/cytology , ADP-ribosyl Cyclase/metabolism , Animals , Antigens, CD/metabolism , Antigens, Ly/metabolism , Bone Marrow/metabolism , Cell Lineage , Cell Membrane/metabolism , GPI-Linked Proteins/metabolism , Glial Cell Line-Derived Neurotrophic Factor Receptors/metabolism , Mice , Models, Biological
11.
Nat Neurosci ; 19(10): 1331-40, 2016 10.
Article in English | MEDLINE | ID: mdl-27571008

ABSTRACT

Despite the variety of physiological and target-related functions, little is known regarding the cellular complexity in the sympathetic ganglion. We explored the heterogeneity of mouse stellate and thoracic ganglia and found an unexpected variety of cell types. We identified specialized populations of nipple- and pilo-erector muscle neurons. These neurons extended axonal projections and were born among other neurons during embryogenesis, but remained unspecialized until target organogenesis occurred postnatally. Target innervation and cell-type specification was coordinated by an intricate acquisition of unique combinations of growth factor receptors and the initiation of expression of concomitant ligands by the nascent erector muscles. Overall, our results provide compelling evidence for a highly sophisticated organization of the sympathetic nervous system into discrete outflow channels that project to well-defined target tissues and offer mechanistic insight into how diversity and connectivity are established during development.


Subject(s)
Motor Neurons/physiology , Muscle, Smooth/physiology , Neurons/physiology , Nipples/physiology , Piloerection/physiology , Animals , Cell Differentiation/physiology , Female , Ganglia, Sympathetic/physiology , Glial Cell Line-Derived Neurotrophic Factor Receptors/metabolism , Homeodomain Proteins/metabolism , Male , Mice , Neurons/metabolism , Proto-Oncogene Proteins c-ret/metabolism , Tumor Suppressor Proteins/metabolism
12.
PLoS One ; 9(8): e104764, 2014.
Article in English | MEDLINE | ID: mdl-25111710

ABSTRACT

Many primary sensory neurons in mouse dorsal root ganglia (DRG) express one or several GFRα's, the ligand-binding receptors of the GDNF family, and their common signaling receptor Ret. GFRα2, the principal receptor for neurturin, is expressed in most of the small nonpeptidergic DRG neurons, but also in some large DRG neurons that start to express Ret earlier. Previously, GFRα2 has been shown to be crucial for the soma size of small nonpeptidergic nociceptors and for their target innervation of glabrous epidermis. However, little is known about this receptor in other Ret-expressing DRG neuron populations. Here we have investigated two populations of Ret-positive low-threshold mechanoreceptors that innervate different types of hair follicles on mouse back skin: the small C-LTMRs and the large Aß-LTMRs. Using GFRα2-KO mice and immunohistochemistry we found that, similar to the nonpeptidergic nociceptors, GFRα2 controls the cell size but not the survival of both C-LTMRs and Aß-LTMRs. In contrast to the nonpeptidergic neurons, GFRα2 is not required for the target innervation of C-LTMRs and Aß-LTMRs in the back skin. These results suggest that different factors drive target innervation in these three populations of neurons. In addition, the observation that the large Ret-positive DRG neurons lack GFRα2 immunoreactivity in mature animals suggests that these neurons switch their GFRα signaling pathways during postnatal development.


Subject(s)
Glial Cell Line-Derived Neurotrophic Factor Receptors/metabolism , Sensory Receptor Cells/cytology , Sensory Receptor Cells/metabolism , Signal Transduction , Skin/cytology , Animals , Cell Size , Female , Ganglia, Spinal/cytology , Gene Knockout Techniques , Glial Cell Line-Derived Neurotrophic Factor Receptors/deficiency , Glial Cell Line-Derived Neurotrophic Factor Receptors/genetics , Hair Follicle/innervation , Male , Mice , Neurofilament Proteins/metabolism , Proto-Oncogene Proteins c-ret/metabolism , Receptors, G-Protein-Coupled/metabolism , Tyrosine 3-Monooxygenase/metabolism
13.
J Physiol ; 591(8): 2175-88, 2013 Apr 15.
Article in English | MEDLINE | ID: mdl-23339174

ABSTRACT

Efferent signals from the vagus nerve are thought to mediate both basal and meal-induced gastric acid secretion, and provide trophic support of the mucosa. However, the underlying mechanisms are incompletely understood. Neurturin, signalling via glial cell line-derived neurotrophic factor (GDNF)-family receptor α2 (GFRα2), is essential for parasympathetic innervation of many target tissues but its role in gastric innervation is unknown. Here we show that most nerve fibres in wild-type mouse gastric mucosa, including all positive for gastrin-releasing peptide, are cholinergic. GFRα2-deficient (KO) mice lacked virtually all cholinergic nerve fibres and associated glial cells in the gastric (oxyntic and pyloric) mucosa but not in the smooth muscle, consistent with the selective expression of neurturin mRNA in the gastric mucosa. 2-Deoxyglucose and hexamethonium failed to affect acid secretion in the GFRα2-KO mice indicating the lack of functional innervation in gastric mucosa. Interestingly, basal and maximal histamine-induced acid secretion did not differ between wild-type and GFRα2-KO mice. Moreover, circulating gastrin levels in both fasted and fed animals, thickness of gastric mucosa, and density of parietal and different endocrine cells were similar. Carbachol-stimulated acid secretion was higher in GFRα2-KO mice, while atropine reduced basal secretion similarly in both genotypes. We conclude that cholinergic innervation of gastric mucosa depends on neurturin-GFRα2 signalling but is dispensable for gastrin secretion and for basal and maximal acid output. Basal acid secretion in the KO mice appears to be, at least partly, facilitated by constitutive activity of muscarinic receptors.


Subject(s)
Gastric Acid/metabolism , Gastric Mucosa/innervation , Gastrins/metabolism , Glial Cell Line-Derived Neurotrophic Factor Receptors/physiology , Animals , Cholinergic Neurons/physiology , Female , Gastrins/blood , Hydrogen-Ion Concentration , Male , Mice , Mice, Knockout , Neuroglia/physiology , Neurturin/physiology
14.
Dev Biol ; 305(1): 325-32, 2007 May 01.
Article in English | MEDLINE | ID: mdl-17355878

ABSTRACT

Enteric neurons, unlike sympathetic and sensory neurons that require target-derived neurotrophins for survival, do not undergo classical caspase-3-mediated programmed cell death (PCD) during normal development. Whether parasympathetic neurons in the pancreas, which originate from a subpopulation of enteric nervous system (ENS) precursors, or other parasympathetic neurons undergo PCD during normal mammalian development is unknown. In GFRalpha2-deficient mice, many submandibular and intrapancreatic parasympathetic neurons are missing but whether this is due to increased neuronal death is unclear. Here we show that activated caspase-3 and PGP9.5 doubly positive neurons are present in wild-type mouse pancreas between embryonic day E15 and birth. Thus, in contrast to ENS neurons, intrapancreatic neurons undergo PCD via apoptosis during normal development. We also show that, in GFRalpha2-deficient mice, most intrapancreatic neurons are lost during this late fetal period, which coincides with a period of increased apoptosis of the neurons. Since the percentage of BrdU and Phox2b doubly positive cells in the fetal pancreas and the number of intrapancreatic neurons at E15 were similar between the genotypes, impaired precursor proliferation and migration are unlikely to contribute to the loss of intrapancreatic neurons in GFRalpha2-KO mice. Caspase-3-positive neurons were also found in GFRalpha2-deficient submandibular ganglia around birth, suggesting that parasympathetic neurons depend on limited supply of (presumably target-derived neurturin) signaling via GFRalpha2 for survival.


Subject(s)
Apoptosis/physiology , Glial Cell Line-Derived Neurotrophic Factor Receptors/genetics , Neurons/cytology , Pancreas/embryology , Parasympathetic Nervous System/cytology , Animals , Apoptosis/genetics , Caspase 3/metabolism , Enteric Nervous System/cytology , Glial Cell Line-Derived Neurotrophic Factor Receptors/deficiency , Immunohistochemistry , Mice , Mice, Knockout , Pancreas/innervation , Pancreas/metabolism , Signal Transduction/genetics , Signal Transduction/physiology , Ubiquitin Thiolesterase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...