Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 158
Filter
1.
J Biol Chem ; 300(8): 107531, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38971312

ABSTRACT

TOR protein kinases serve as the catalytic subunit of the TORC1 and TORC2 complexes, which regulate cellular growth, proliferation, and survival. In the fission yeast, Schizosaccharomyces pombe, cells lacking TORC2 or its downstream kinase Gad8 (AKT or SGK1 in human cells) exhibit sensitivity to a wide range of stress conditions, including DNA damage stress. One of the first responses to DNA damage is the phosphorylation of C-terminal serine residues within histone H2AX in human cells (γH2AX), or histone H2A in yeast cells (γH2A). The kinases responsible for γH2A in S. pombe are the two DNA damage checkpoint kinases Rad3 and Tel1 (ATR and ATM, respectively, in human cells). Here we report that TORC2-Gad8 signaling is required for accumulation of γH2A in response to DNA damage and during quiescence. Using the TOR-specific inhibitor, Torin1, we demonstrate that the effect of TORC2 on γH2A in response to DNA damage is immediate, rather than adaptive. The lack of γH2A is restored by deletion mutations of transcription and chromatin modification factors, including loss of components of Paf1C, SAGA, Mediator, and the bromo-domain proteins Bdf1/Bdf2. Thus, we suggest that TORC2-Gad8 may affect the accumulation of γH2A by regulating chromatin structure and function.

2.
Int J Mol Sci ; 25(6)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38542333

ABSTRACT

DNA Damage Tolerance (DDT) mechanisms allow cells to bypass lesions in the DNA during replication. This allows the cells to progress normally through the cell cycle in the face of abnormalities in their DNA. PCNA, a homotrimeric sliding clamp complex, plays a central role in the coordination of various processes during DNA replication, including the choice of mechanism used during DNA damage bypass. Mono-or poly-ubiquitination of PCNA facilitates an error-prone or an error-free bypass mechanism, respectively. In contrast, SUMOylation recruits the Srs2 helicase, which prevents local homologous recombination. The Elg1 RFC-like complex plays an important role in unloading PCNA from the chromatin. We analyze the interaction of mutations that destabilize PCNA with mutations in the Elg1 clamp unloader and the Srs2 helicase. Our results suggest that, in addition to its role as a coordinator of bypass mechanisms, the very presence of PCNA on the chromatin prevents homologous recombination, even in the absence of the Srs2 helicase. Thus, PCNA unloading seems to be a pre-requisite for recombinational repair.


Subject(s)
Saccharomyces cerevisiae Proteins , Proliferating Cell Nuclear Antigen/genetics , Proliferating Cell Nuclear Antigen/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , DNA Damage , DNA Helicases/genetics , DNA Helicases/metabolism , Homologous Recombination , DNA Replication , DNA/genetics , DNA/metabolism , Chromatin/genetics , Chromatin/metabolism , Carrier Proteins/metabolism
3.
Elife ; 122023 08 02.
Article in English | MEDLINE | ID: mdl-37530521

ABSTRACT

Telomeres cap and protect the linear eukaryotic chromosomes. Telomere length is determined by an equilibrium between positive and negative regulators of telomerase activity. A systematic screen for yeast mutants that affect telomere length maintenance in the yeast Saccharomyces cerevisiae revealed that mutations in any of ~500 genes affects telomere length. One of the genes that, when mutated, causes telomere elongation is ELG1, which encodes an unloader of PCNA, the processivity factor for replicative DNA polymerases. PCNA can undergo SUMOylation on two conserved residues, K164 and K127, or ubiquitination at lysine 164. These modifications have already been implicated in genome stability processes. We report that SUMOylated PCNA acts as a signal that positively regulates telomerase activity. We also uncovered physical interactions between Elg1 and the CST (Cdc13-Stn1-Ten) complex and addressed the mechanism by which Elg1 and Stn1 negatively regulates telomere elongation, coordinated by SUMO. We discuss these results with respect to how chromosomal replication and telomere elongation are coordinated.


Subject(s)
Saccharomyces cerevisiae Proteins , Telomerase , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Proliferating Cell Nuclear Antigen/genetics , Telomerase/metabolism , Telomere-Binding Proteins/genetics , Telomere-Binding Proteins/metabolism , Protein Binding , Telomere/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Carrier Proteins/metabolism
4.
Biology (Basel) ; 12(7)2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37508436

ABSTRACT

Snf1, the fungal homologue of mammalian AMP-dependent kinase (AMPK), is a key protein kinase coordinating the response of cells to a shortage of glucose. In fungi, the response is to activate respiratory gene expression and metabolism. The major regulation of Snf1 activity has been extensively investigated: In the absence of glucose, it becomes activated by phosphorylation of its threonine at position 210. This modification can be erased by phosphatases when glucose is restored. In the past decade, two additional independent mechanisms of Snf1 regulation have been elucidated. In response to glucose (or, surprisingly, also to DNA damage), Snf1 is SUMOylated by Mms21 at lysine 549. This inactivates Snf1 and leads to Snf1 degradation. More recently, glucose-induced proton export has been found to result in Snf1 inhibition via a polyhistidine tract (13 consecutive histidine residues) at the N-terminus of the Snf1 protein. Interestingly, the polyhistidine tract plays also a central role in the response to iron scarcity. This review will present some of the glucose-sensing mechanisms of S. cerevisiae, how they interact, and how their interplay results in Snf1 inhibition by three different, and independent, mechanisms.

5.
Genes (Basel) ; 14(2)2023 02 02.
Article in English | MEDLINE | ID: mdl-36833317

ABSTRACT

Several DNA polymerases participate in DNA synthesis during genome replication and DNA repair. PCNA, a homotrimeric ring, acts as a processivity factor for DNA polymerases. PCNA also acts as a "landing pad" for proteins that interact with chromatin and DNA at the moving fork. The interaction between PCNA and polymerase delta (Polδ) is mediated by PIPs (PCNA-interacting peptides), in particular the one on Pol32, a regulatory subunit of Polδ. Here, we demonstrate that pol3-01, an exonuclease mutant of Polδ's catalytic subunit, exhibits a weak interaction with Pol30 compared to the WT DNA polymerase. The weak interaction activates DNA bypass pathways, leading to increased mutagenesis and sister chromatid recombination. Strengthening pol3-01's weak interaction with PCNA suppresses most of the phenotypes. Our results are consistent with a model in which Pol3-01 tends to detach from the chromatin, allowing an easier replacement of Polδ by the trans-lesion synthesis polymerase Zeta (Polz), thus leading to the increased mutagenic phenotype.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Proliferating Cell Nuclear Antigen/genetics , DNA Polymerase III/metabolism , Saccharomyces cerevisiae Proteins/genetics , DNA-Directed DNA Polymerase/genetics , DNA/genetics , Chromatin
6.
Int J Mol Sci ; 24(2)2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36674878

ABSTRACT

Energy status in all eukaryotic cells is sensed by AMP-kinases. We have previously found that the poly-histidine tract at the N-terminus of S. cerevisiae AMPK (Snf1) inhibits its function in the presence of glucose via a pH-regulated mechanism. We show here that in the absence of glucose, the poly-histidine tract has a second function, linking together carbon and iron metabolism. Under conditions of iron deprivation, when different iron-intense cellular systems compete for this scarce resource, Snf1 is inhibited. The inhibition is via an interaction of the poly-histidine tract with the low-iron transcription factor Aft1. Aft1 inhibition of Snf1 occurs in the nucleus at the nuclear membrane, and only inhibits nuclear Snf1, without affecting cytosolic Snf1 activities. Thus, the temporal and spatial regulation of Snf1 activity enables a differential response to iron depending upon the type of carbon source. The linkage of nuclear Snf1 activity to iron sufficiency ensures that sufficient clusters are available to support respiratory enzymatic activity and tests mitochondrial competency prior to activation of nuclear Snf1.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolism , Protein Serine-Threonine Kinases/metabolism , AMP-Activated Protein Kinases/metabolism , Phosphorylation , Saccharomyces cerevisiae Proteins/metabolism , Carbon/metabolism , Iron/metabolism , Glucose/metabolism
7.
Int J Mol Sci ; 24(2)2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36675081

ABSTRACT

Timely and complete replication of the genome is essential for life. The PCNA ring plays an essential role in DNA replication and repair by contributing to the processivity of DNA polymerases and by recruiting proteins that act in DNA replication-associated processes. The ELG1 gene encodes a protein that works, together with the Rfc2-5 subunits (shared by the replication factor C complex), to unload PCNA from chromatin. While ELG1 is not essential for life, deletion of the gene has strong consequences for the stability of the genome, and elg1 mutants exhibit sensitivity to DNA damaging agents, defects in genomic silencing, high mutation rates, and other striking phenotypes. Here, we sought to understand whether all the roles attributed to Elg1 in genome stability maintenance are due to its effects on PCNA unloading, or whether they are due to additional functions of the protein. By using a battery of mutants that affect PCNA accumulation at various degrees, we show that all the phenotypes measured correlate with the amount of PCNA left at the chromatin. Our results thus demonstrate the importance of Elg1 and of PCNA unloading in promoting proper chromatin structure and in maintaining a stable genome.


Subject(s)
DNA Replication , Saccharomyces cerevisiae Proteins , Carrier Proteins/metabolism , Chromatin/genetics , Chromatin/metabolism , DNA/metabolism , DNA Damage , Proliferating Cell Nuclear Antigen/genetics , Proliferating Cell Nuclear Antigen/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism
8.
FEMS Microbiol Rev ; 47(1)2023 01 16.
Article in English | MEDLINE | ID: mdl-36370456

ABSTRACT

Each time a cell divides, it needs to duplicate the genome and then separate the two copies. In eukaryotes, which usually have more than one linear chromosome, this entails tethering the two newly replicated DNA molecules, a phenomenon known as sister chromatid cohesion (SCC). Cohesion ensures proper chromosome segregation to separate poles during mitosis. SCC is achieved by the presence of the cohesin complex. Besides its canonical function, cohesin is essential for chromosome organization and DNA damage repair. Surprisingly, yeast cohesin is loaded in G1 before DNA replication starts but only acquires its binding activity during DNA replication. Work in microorganisms, such as Saccharomyces cerevisiae and Schizosaccharomyces pombe has greatly contributed to the understanding of cohesin composition and functions. In the last few years, much progress has been made in elucidating the role of cohesin in chromosome organization and compaction. Here, we discuss the different functions of cohesin to ensure faithful chromosome segregation and genome stability during the mitotic cell division in yeast. We describe what is known about its composition and how DNA replication is coupled with SCC establishment. We also discuss current models for the role of cohesin in chromatin loop extrusion and delineate unanswered questions about the activity of this important, conserved complex.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Chromatids/genetics , Chromatids/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Chromosome Segregation , DNA/metabolism , Cohesins
9.
Front Genet ; 13: 1033113, 2022.
Article in English | MEDLINE | ID: mdl-36406126

ABSTRACT

The natural ends of the linear eukaryotic chromosomes are protected by telomeres, which also play an important role in aging and cancer development. Telomere length varies between species, but it is strictly controlled in all organisms. The process of Telomere Length Maintenance (TLM) involves many pathways, protein complexes and interactions that were first discovered in budding and fission yeast model organisms (Saccharomyces cerevisiae, Schizosaccharomyces pombe). In particular, large-scale systematic genetic screens in budding yeast uncovered a network of ≈ 500 genes that, when mutated, cause telomeres to lengthen or to shorten. In contrast, the TLM network in fission yeast remains largely unknown and systematic data is still lacking. In this work we try to close this gap and develop a unified interpretable machine learning framework for TLM gene discovery and phenotype prediction in both species. We demonstrate the utility of our framework in pinpointing the pathways by which TLM homeostasis is maintained and predicting novel TLM genes in fission yeast. The results of this study could be used for better understanding of telomere biology and serve as a step towards the adaptation of computational methods based on telomeric data for human prognosis.

10.
iScience ; 25(10): 105083, 2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36147951

ABSTRACT

Cellular regulation of pH is crucial for internal biological processes and for the import and export of ions and nutrients. In the yeast Saccharomyces cerevisiae, the major proton pump (Pma1) is regulated by glucose. Glucose is also an inhibitor of the energy sensor Snf1/AMPK, which is conserved in all eukaryotes. Here, we demonstrate that a poly-histidine (polyHIS) tract in the pre-kinase region (PKR) of Snf1 functions as a pH-sensing module (PSM) and regulates Snf1 activity. This regulation is independent from, and unaffected by, phosphorylation at T210, the major regulatory control of Snf1, but is controlled by the Pma1 plasma-membrane proton pump. By examining the PKR from additional yeast species, and by varying the number of histidines in the PKR, we determined that the polyHIS functions progressively. This regulation mechanism links the activity of a key enzyme with the metabolic status of the cell at any given moment.

11.
mBio ; 13(4): e0142022, 2022 08 30.
Article in English | MEDLINE | ID: mdl-35708277

ABSTRACT

During DNA replication, the newly created sister chromatids are held together until their separation at anaphase. The cohesin complex is in charge of creating and maintaining sister chromatid cohesion (SCC) in all eukaryotes. In Saccharomyces cerevisiae cells, cohesin is composed of two elongated proteins, Smc1 and Smc3, bridged by the kleisin Mcd1/Scc1. The latter also acts as a scaffold for three additional proteins, Scc3/Irr1, Wpl1/Rad61, and Pds5. Although the HEAT-repeat protein Pds5 is essential for cohesion, its precise function is still debated. Deletion of the ELG1 gene, encoding a PCNA unloader, can partially suppress the temperature-sensitive pds5-1 allele, but not a complete deletion of PDS5. We carried out a genetic screen for high-copy-number suppressors and another for spontaneously arising mutants, allowing the survival of a pds5Δ elg1Δ strain. Our results show that cells remain viable in the absence of Pds5 provided that there is both an elevation in the level of Mcd1 (which can be due to mutations in the CLN2 gene, encoding a G1 cyclin), and an increase in the level of SUMO-modified PCNA on chromatin (caused by lack of PCNA unloading in elg1Δ mutants). The elevated SUMO-PCNA levels increase the recruitment of the Srs2 helicase, which evicts Rad51 molecules from the moving fork, creating single-stranded DNA (ssDNA) regions that serve as sites for increased cohesin loading and SCC establishment. Thus, our results delineate a double role for Pds5 in protecting the cohesin ring and interacting with the DNA replication machinery. IMPORTANCE Sister chromatid cohesion is vital for faithful chromosome segregation, chromosome folding into loops, and gene expression. A multisubunit protein complex known as cohesin holds the sister chromatids from S phase until the anaphase stage. In this study, we explore the function of the essential cohesin subunit Pds5 in the regulation of sister chromatid cohesion. We performed two independent genetic screens to bypass the function of the Pds5 protein. We observe that Pds5 protein is a cohesin stabilizer, and elevating the levels of Mcd1 protein along with SUMO-PCNA accumulation on chromatin can compensate for the loss of the PDS5 gene. In addition, Pds5 plays a role in coordinating the DNA replication and sister chromatid cohesion establishment. This work elucidates the function of cohesin subunit Pds5, the G1 cyclin Cln2, and replication factors PCNA, Elg1, and Srs2 in the proper regulation of sister chromatid cohesion.


Subject(s)
Cell Cycle Proteins , Chromosomal Proteins, Non-Histone , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Carrier Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Chromatids/genetics , Chromatids/metabolism , Chromatin/metabolism , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Chromosome Segregation , Cyclins/genetics , DNA Helicases/metabolism , Proliferating Cell Nuclear Antigen/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Cohesins
12.
PLoS Genet ; 18(2): e1010061, 2022 02.
Article in English | MEDLINE | ID: mdl-35157728

ABSTRACT

The fission yeast TOR complex 2 (TORC2) is required for gene silencing at subtelomeric regions and for the induction of gene transcription in response to DNA replication stress. Thus, TORC2 affects transcription regulation both negatively and positively. Whether these two TORC2-dependent functions share a common molecular mechanism is currently unknown. Here, we show that Gad8 physically interacts with proteins that regulate transcription, including subunits of the Spt-Ada-Gcn5-acetyltransferase (SAGA) complex and the BET bromodomain protein Bdf2. We demonstrate that in the absence of TORC2, Gcn5, the histone acetyltransferase subunit of SAGA, accumulates at subtelomeric genes and at non-induced promoters of DNA replication genes. Remarkably, the loss of Gcn5 in TORC2 mutant cells restores gene silencing as well as transcriptional induction in response to DNA replication stress. Loss of Bdf2 alleviates excess of Gcn5 binding in TORC2 mutant cells and also rescues the aberrant regulation of transcription in these cells. Furthermore, the loss of either SAGA or Bdf2 suppresses the sensitivity of TORC2 mutant cells to a variety of stresses, including DNA replication, DNA damage, temperature and nutrient stresses. We suggest a role of TORC2 in transcriptional regulation that is critical for gene silencing and gene induction in response to stress and involves the binding of Gcn5 to the chromatin.


Subject(s)
Saccharomyces cerevisiae Proteins , Schizosaccharomyces pombe Proteins , Schizosaccharomyces , Acetyltransferases/genetics , DNA Replication/genetics , Fungal Proteins/genetics , Heterochromatin/metabolism , Histone Acetyltransferases/genetics , Histone Acetyltransferases/metabolism , Mechanistic Target of Rapamycin Complex 2/genetics , Mechanistic Target of Rapamycin Complex 2/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Schizosaccharomyces/genetics , Schizosaccharomyces pombe Proteins/genetics
13.
EMBO J ; 41(4): e108290, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35028974

ABSTRACT

Nucleotide metabolism fuels normal DNA replication and is also primarily targeted by the DNA replication checkpoint when replication stalls. To reveal a comprehensive interconnection between genome maintenance and metabolism, we analyzed the metabolomic changes upon replication stress in the budding yeast S. cerevisiae. We found that upon treatment of cells with hydroxyurea, glucose is rapidly diverted to the oxidative pentose phosphate pathway (PPP). This effect is mediated by the AMP-dependent kinase, SNF1, which phosphorylates the transcription factor Mig1, thereby relieving repression of the gene encoding the rate-limiting enzyme of the PPP. Surprisingly, NADPH produced by the PPP is required for efficient recruitment of replication protein A (RPA) to single-stranded DNA, providing the signal for the activation of the Mec1/ATR-Rad53/CHK1 checkpoint signaling kinase cascade. Thus, SNF1, best known as a central energy controller, determines a fast mode of replication checkpoint activation through a redox mechanism. These findings establish that SNF1 provides a hub with direct links to cellular metabolism, redox, and surveillance of DNA replication in eukaryotes.


Subject(s)
DNA Replication , Protein Serine-Threonine Kinases/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Checkpoint Kinase 2/genetics , Checkpoint Kinase 2/metabolism , DNA Replication/drug effects , DNA, Single-Stranded/metabolism , Glucose/genetics , Glucose/metabolism , Glycolysis/physiology , Hydroxyurea , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , NADP/metabolism , Pentose Phosphate Pathway , Phosphorylation , Protein Serine-Threonine Kinases/genetics , Replication Protein A/genetics , Replication Protein A/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
14.
Genes (Basel) ; 12(11)2021 11 18.
Article in English | MEDLINE | ID: mdl-34828416

ABSTRACT

During each cell duplication, the entirety of the genomic DNA in every cell must be accurately and quickly copied. Given the short time available for the chore, the requirement of many proteins, and the daunting amount of DNA present, DNA replication poses a serious challenge to the cell. A high level of coordination between polymerases and other DNA and chromatin-interacting proteins is vital to complete this task. One of the most important proteins for maintaining such coordination is PCNA. PCNA is a multitasking protein that forms a homotrimeric ring that encircles the DNA. It serves as a processivity factor for DNA polymerases and acts as a landing platform for different proteins interacting with DNA and chromatin. Therefore, PCNA is a signaling hub that influences the rate and accuracy of DNA replication, regulates DNA damage repair, controls chromatin formation during the replication, and the proper segregation of the sister chromatids. With so many essential roles, PCNA recruitment and turnover on the chromatin is of utmost importance. Three different, conserved protein complexes are in charge of loading/unloading PCNA onto DNA. Replication factor C (RFC) is the canonical complex in charge of loading PCNA during the S-phase. The Ctf18 and Elg1 (ATAD5 in mammalian) proteins form complexes similar to RFC, with particular functions in the cell's nucleus. Here we summarize our current knowledge about the roles of these important factors in yeast and mammals.


Subject(s)
Genomic Instability , Proliferating Cell Nuclear Antigen/metabolism , Animals , DNA Damage , DNA Replication , Heterochromatin/metabolism , Humans , Proliferating Cell Nuclear Antigen/genetics
15.
J Mol Biol ; 433(23): 167276, 2021 11 19.
Article in English | MEDLINE | ID: mdl-34599943

ABSTRACT

Split reporter protein-based genetic section systems are widely used to identify and characterize protein-protein interactions (PPI). The assembly of split markers that antagonize toxins, rather than required for synthesis of missing metabolites, facilitates the seeding of high density of cells and selective growth. Here we present a newly developed split chloramphenicol acetyltransferase (split-CAT) -based genetic selection system. The N terminus fragment of CAT is fused downstream of the protein of interest and the C terminus fragment is tethered upstream to its postulated partner. We demonstrate the system's advantages for the study of PPIs. Moreover, we show that co-expression of a functional ubiquitylation cascade where the target and ubiquitin are tethered to the split-CAT fragments results in ubiquitylation-dependent selective growth. Since proteins do not have to be purified from the bacteria and due to the high sensitivity of the split-CAT reporter, detection of challenging protein cascades and post-translation modifications is enabled. In addition, we demonstrate that the split-CAT system responds to small molecule inhibitors and molecular glues (GLUTACs). The absence of ubiquitylation-dependent degradation and deubiquitylation in E. coli significantly simplify the interpretation of the results. We harnessed the developed system to demonstrate that like NEDD4, UBE3B also undergoes self-ubiquitylation-dependent inactivation. We show that self-ubiquitylation of UBE3B on K665 induces oligomerization and inactivation in yeast and mammalian cells respectively. Finally, we showcase the advantages of split-CAT in the study of human diseases by demonstrating that mutations in UBE3B that cause Kaufman oculocerebrofacial syndrome exhibit clear E. coli growth phenotypes.


Subject(s)
Biological Assay/methods , Chloramphenicol O-Acetyltransferase/genetics , Chloramphenicol O-Acetyltransferase/metabolism , Gene Expression , Genes, Reporter , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Enzyme Activation , Escherichia coli/genetics , Escherichia coli/metabolism , Protein Processing, Post-Translational , Proteolysis
16.
Curr Genet ; 67(4): 501-510, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33715066

ABSTRACT

As cells replicate their DNA, there is a need to synthesize new histones with which to wrap it. Newly synthesized H3 histones that are incorporated into the assembling chromatin behind the replication fork are acetylated at lysine 56. The acetylation is removed by two deacetylases, Hst3 and Hst4. This process is tightly regulated and any perturbation leads to genomic instability and replicative stress. We recently showed that Dun1, a kinase implicated mainly in the regulation of dNTPs, is vital in cells with hyper-acetylation, to counteract Rad53's inhibition on late-firing origins of replication. Our work showed that ∆hst3 ∆hst4 cells depend on late origin firing for survival, and are unable to prevent Rad53's inhibition when Dun1 is inactive. Thus, our work describes a role for Dun1 that is independent on its known function as a regulator of dNTP levels. Here we show that Mrc1 (Claspin in mammals), a protein that moves with the replicating fork and participates in both replication and checkpoint functions, plays also an essential role in the absence of H3K56Ac deacetylation. The sum of the results shown here and in our recent publication suggests that dormant origins are also utilized in these cells, making Mrc1, which regulates firing from these origins, also essential when histone H3 is hyper-acetylated. Thus, cells suffering from hyper-acetylation of H3K56 experience replication stress caused by a combination of prone-to-collapse forks and limited replication tracts. This combination makes both Dun1 and Mrc1, each acting on different targets, essential for viability.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Cell Cycle Proteins/genetics , Checkpoint Kinase 2/genetics , DNA Replication/genetics , Protein Serine-Threonine Kinases/genetics , Saccharomyces cerevisiae Proteins/genetics , Acetylation , Chromatin/genetics , Histone Deacetylases/genetics , Histones/genetics , Humans , Saccharomyces cerevisiae/genetics
17.
Genes (Basel) ; 12(3)2021 02 25.
Article in English | MEDLINE | ID: mdl-33668997

ABSTRACT

Acetylation on lysine 56 of histone H3 of the yeast Saccharomyces cerevisiae has been implicated in many cellular processes that affect genome stability. Despite being the object of much research, the complete scope of the roles played by K56 acetylation is not fully understood even today. The acetylation is put in place at the S-phase of the cell cycle, in order to flag newly synthesized histones that are incorporated during DNA replication. The signal is removed by two redundant deacetylases, Hst3 and Hst4, at the entry to G2/M phase. Its crucial location, at the entry and exit points of the DNA into and out of the nucleosome, makes this a central modification, and dictates that if acetylation and deacetylation are not well concerted and executed in a timely fashion, severe genomic instability arises. In this review, we explore the wealth of information available on the many roles played by H3K56 acetylation and the deacetylases Hst3 and Hst4 in DNA replication and repair.


Subject(s)
Histone Deacetylases/metabolism , Histones/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Acetylation , DNA Repair , DNA Replication , Genomic Instability , S Phase
18.
PLoS Genet ; 17(2): e1009391, 2021 02.
Article in English | MEDLINE | ID: mdl-33600490

ABSTRACT

During DNA replication newly synthesized histones are incorporated into the chromatin of the replicating sister chromatids. In the yeast Saccharomyces cerevisiae new histone H3 molecules are acetylated at lysine 56. This modification is carefully regulated during the cell cycle, and any disruption of this process is a source of genomic instability. Here we show that the protein kinase Dun1 is necessary in order to maintain viability in the absence of the histone deacetylases Hst3 and Hst4, which remove the acetyl moiety from histone H3. This lethality is not due to the well-characterized role of Dun1 in upregulating dNTPs, but rather because Dun1 is needed in order to counteract the checkpoint kinase Rad53 (human CHK2) that represses the activity of late firing origins. Deletion of CTF18, encoding the large subunit of an alternative RFC-like complex (RLC), but not of components of the Elg1 or Rad24 RLCs, is enough to overcome the dependency of cells with hyper-acetylated histones on Dun1. We show that the detrimental function of Ctf18 depends on its interaction with the leading strand polymerase, Polε. Our results thus show that the main problem of cells with hyper-acetylated histones is the regulation of their temporal and replication programs, and uncover novel functions for the Dun1 protein kinase and the Ctf18 clamp loader.


Subject(s)
Cell Cycle Proteins/genetics , Histone Deacetylases/genetics , Histones/genetics , Mutation , Protein Serine-Threonine Kinases/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Acetylation , Cell Cycle Proteins/metabolism , Checkpoint Kinase 2/genetics , Checkpoint Kinase 2/metabolism , Histone Deacetylases/metabolism , Histones/metabolism , Humans , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Lysine/genetics , Lysine/metabolism , Phosphorylation , Protein Serine-Threonine Kinases/metabolism , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Temperature
19.
Curr Opin Cell Biol ; 69: 1-6, 2021 04.
Article in English | MEDLINE | ID: mdl-33388622

ABSTRACT

Many cellular processes involve buffering mechanisms against noise to enhance state stability. Such processes include the cell cycle and the switch between respiration and fermentation. In recent years, protein aggregation/condensation has emerged as an important regulatory mechanism. In this article, we examine the regulation of Std1, an activator of the Snf1/AMPK kinase, by sequestration into foci of liquid drops, and how foci of metabolic signaling and enzymatic proteins are regulated by chaperones, anti-aggregases and by phosphorylation.


Subject(s)
Intracellular Signaling Peptides and Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Glucose , Phosphorylation , Saccharomyces cerevisiae/metabolism , Signal Transduction
20.
FEMS Microbiol Rev ; 45(1)2021 01 08.
Article in English | MEDLINE | ID: mdl-32840566

ABSTRACT

What is the origin of mutations? In contrast to the naïve notion that mutations are unfortunate accidents, genetic research in microorganisms has demonstrated that most mutations are created by genetically encoded error-prone repair mechanisms. However, error-free repair pathways also exist, and it is still unclear how cells decide when to use one repair method or the other. Here, we summarize what is known about the DNA damage tolerance mechanisms (also known as post-replication repair) for perhaps the best-studied organism, the yeast Saccharomyces cerevisiae. We describe the latest research, which has established the existence of at least two error-free and two error-prone inter-related mechanisms of damage tolerance that compete for the handling of spontaneous DNA damage. We explore what is known about the induction of mutations by DNA damage. We point to potential paradoxes and to open questions that still remain unanswered.


Subject(s)
DNA Damage/genetics , DNA Repair , Mutagenesis , Saccharomyces cerevisiae/genetics , Mutation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL